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Abstract

A numerical method is developed for approximating the Vlasov–Poisson–Fokker–Planck system in one dimension.

This system of equations is a mathematical model for an electrostatic plasma in which collisions between the electron

distribution and a surrounding medium are taken into account. The numerical procedure combines a deterministic par-

ticle type computation with a process for periodically reconstructing the distribution function on a fixed grid. The

method is tested on some computational examples and shown to be stable and accurate on an extended interval of time.

Some comparisons are also made with other methods of approximation for the Vlasov–Poisson–Fokker–Planck system.

� 2004 Elsevier Inc. All rights reserved.
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1. The system of equations

The Vlasov–Poisson–Fokker–Planck system in one dimension with periodic boundary conditions is gi-

ven as follows: for the region of phase space A = {(x,v)/0 6 x 6 L, �1 < v < �1} and t 2 [0,T] then
f(x,v,t) is the phase space distribution function defined on A · [0,T] which satisfies the system of equations
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where
Eðx; tÞ ¼ o/
ox
and /(x,t) is the solution to
o2/
ox2

¼ qðx; tÞ; ð1:2Þ

/ð0; tÞ ¼ /ðL; tÞ ¼ 0;
with
qðx; tÞ ¼
Z 1

�1
f ðx; v; tÞdv� hðxÞ: ð1:3Þ
The function h(x) represents a fixed background charge. In addition it is assumed that
f0ð0; vÞ ¼ f0ðL; vÞ
and
 Z L

0

Z 1

�1
f0ðx; vÞdv dx ¼

Z L

0

hðxÞdx; ð1:4Þ
the latter being a condition for total charge neutrality. This system of equations describes the time evolution
of an electrostatic plasma. In this plasma model collisions between the elements of the electron distribution,

f(x,v,t), and a surrounding medium are taken into account through the inclusion of the terms involving q

and b.
We can assume the existence and uniqueness of a solution to (1.1) and (1.2) of class C2(A · [0,T]) and

which can be extended periodically to each strip nL 6 x 6 (n + 1)L, �1 <v < 1, 0 6 t 6 T. A proof

of global existence and uniqueness of the solution to the Vlasov–Poisson–Fokker–Planck system in one

dimension is contained in [17]. If f0(x,v) P 0 then it can be shown that f(x,v,t) P 0 for t > 0 and if
Z L

0

Z 1

�1
f0ðx; vÞdv dx
is finite then
Z L

0

Z 1

�1
f ðx; v; tÞdv dx ¼

Z L

0

Z 1

�1
f0ðx; vÞdv dx: ð1:5Þ
Given (1.4) then
Z L

0

qðx; tÞdx ¼ 0; tP0:
Also, the boundary condition for / implies that
Z L

0

Eðx; tÞdx ¼ 0; tP0:
In terms of the Green�s function for the boundary value problem (1.2) then
Eðx; tÞ ¼
Z L

0

Kðx;�xÞqð�x; tÞd�x
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and
Kðx;�xÞ ¼
�x=L; 0 < �x6 x;
�x
L � 1; x < �x6L:

�

Thus
Eðx; tÞ ¼
Z L

0

Kðx;�xÞ
Z 1

�1
f dv� hð�xÞ

� �
d�x ¼

Z L

0

Z 1

�1
Kðx;�xÞf ð�x; v; tÞdv d�x�

Z L

0

Kðx;�xÞhð�xÞd�x: ð1:6Þ
One way of numerically approximating solutions to (1.1) and (1.2) is the random particle method. An

analysis of the method is in [9], and a computational study of this method is carried out in [1]. Some com-

putational work on the random particle method is also done in [15]. Papers have also been written on deter-

ministic methods for numerically solving the system [10,13–15]. The approach taken in these papers is to

approximate the solution to (1.1) and (1.2) by computing the solution along characteristic curves associated

with the first order transport part of (1.1). In the present paper, we consider another way of doing this. A
type of deterministic particle method is formulated based on characteristic trajectories. However, over a

relatively long time interval the particle method alone develops numerical instabilities. Thus, limits are

set on the length of time for which the particle computation is applied, and at the end of this time interval

the approximate distribution function is reconstructed on a fixed grid. With the reconstructed solution serv-

ing as a new set of initial data the particle method is restarted and continued for another time interval.

Combining the particle type computation along characteristic trajectories with the periodic regriding of

the distribution function leads to a numerical method that is stable and accurate on an extended interval

of time. Aspects of this paper were presented in preliminary form in [20].
To put this system into a different form for approximation we start with a somewhat simpler linear initial

value problem in all of phase space in which E(x,t) is a known function.
of
ot

þ v
of
ox

þ ðEðx; tÞ � bvÞ of
ov

� bf � q
o
2f
ov2

¼ 0; ð1:7Þ

f ðx; v; 0Þ ¼ f0ðx; vÞ; �1 < x < 1; �1 < v < 1:
The characteristic system associated with the equation
of
ot

þ v
of
ox

þ ðEðx; tÞ � bvÞ of
ov

¼ 0 ð1:8Þ
is
dx
dt

¼ v; xð0Þ ¼ x0; ð1:9Þ

dv
dt

¼ EðxðtÞ; tÞ � bv; vð0Þ ¼ v0: ð1:10Þ
The solution to (1.9) and (1.10) is
xðtÞ ¼ xðx0; v0; tÞ; vðtÞ ¼ vðx0; v0; tÞ;

continuously differentiate functions of x0, v0 and t. For each t the transformation of R2 given by
ðx0; v0Þ ! ðxðx0; v0; tÞ; vðx0; v0; tÞÞ ð1:11Þ
has nonzero Jacobian and is therefore invertible. Let the functions
x0 ¼ x0ðx; v; tÞ; v0 ¼ v0ðx; v; tÞ ð1:12Þ
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define the inverse transformation (x,v)! (x0(x,v,t), v0(x,v,t)). Following an approach taken by Chandrase-

khar in [5], Eq. (1.7) iswritten in termsof the variablesx0, v0 and twithx0, v0 givenby the functions (1.12).Using

the fact that the functions (1.12) are independent integrals of (1.9) and (1.10), in terms of x0, v0, t, Eq. (1.7) is
of
ot

� bf � q
ox0
ov

� �2
o2f
ox20

þ 2
ox0
ov

� �
ov0
ov

� �
o2f

ox0 ov0
þ ov0

ov

� �2
o2f
ov20

þ o2x0
ov2

of
ox0

þ o2v0
ov2

of
ov0

" #
¼ 0: ð1:13Þ
If f(x0,v0,t) is the solution to (1.13) then let
f ðx0; v0; tÞ ¼ ebtgðx0; v0; tÞ:

Then
of
ot

¼ ebt
og
ot

þ b ebtg
and substituting into (1.13) the equation for g(x0,v0,t) is
og
ot

� q
ox0
ov

� �2
o2g
ox20

þ 2
ox0
ov

� �
ov0
ov

� �
o2g

ox0 ov0
þ ov0

ov

� �2
o2g
ov20

þ o2x0
ov2

og
ox0

þ o2v0
ov2

og
ov0

" #
¼ 0: ð1:14Þ
We want to write (1.14) with coefficients in terms of x0, v0, t. The Jacobian of the transformation (1.11) is
oðx;vÞ
oðx0;v0Þ

¼ jQj where
Q ¼
ox
ox0

ox
ov0

ov
ox0

ov
ov0

 !
:

Following the methods of [8] we determine that
ox0
ov

¼ � 1

jQj
ox
ov0

;
ov0
ov

¼ 1

jQj
ox
ox0

;

o
2x 1 ov ox

� �
o
2v 1 ox ov

� �

0

ov2
¼

jQj3 ov0
P 1 �

ov0
P 2 ;

0

ov2
¼

jQj3 ox0
P 2 �

ox0
P 1 ;
where � � � �� � � �

P 1 ¼ � o2x

ox20

ox
ov0

2

þ 2
o2x

ox0 ov0

ox
ov0

ox
ox0

� o2x
ov20

ox
ox0

2

; ð1:15Þ

P 2 ¼ � o2v
ox20

ox
ov0

� �2

þ 2
o2v

ox0 ov0

ox
ov0

� �
ox
ox0

� �
� o2v
ov20

ox
ox0

� �2

: ð1:16Þ
We compute the determinant of Q� �

jQj ¼ jQTj ¼

ox
ox0

ov
ox0

ox
ov0

ov
ov0

����
����;

djQj
dt

¼
d
dt

ox
ox0

� �
ov
ox0

d
dt

ox
ov0

� �
ov
ov0

�������
�������þ

ox
ox0

d
dt

ov
ox0

� �
ox
ov0

d
dt

ov
ov0

� �
�������

�������
¼

ov
ox0

ov
ox0

ov
ov0

ov
ov0

�����
�����þ

ox
ox0

oE
ox

ox
ox0

� b ov
ox0

ox
ov0

oE
ox

ox
ov0

� b ov
ov0

�����
�����

¼ �b
ox
ox0

ov
ox0

ox
ov0

ov
ov0

�����
����� ¼ �bjQj:
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Also
jQjð0Þ ¼
ox0
ox0

ov0
ox0

ox0
ov0

ov0
ov0

�����
����� ¼ 1 0

0 1

����
���� ¼ 1:
Thus
djQj
dt

¼ �bjQj; jQjð0Þ ¼ 1;
so
jQj ¼ e�bt: ð1:17Þ

Eq. (1.14) is therefore written as
og
ot

¼ q ðaðx0; v0; tÞÞ2
o2g
ox20

� 2aðx0; v0; tÞbðx0; v0; tÞ
o2g

ox0 ov0
þ ðbðx0; v0; tÞÞ2

o2g
ov20

þ cðx0; v0; tÞ
og
ox0

þ dðx0; v0; tÞ
og
ov0

� �
;

ð1:18Þ

gðx0; v0; 0Þ ¼ f0ðx0; v0Þ;

aðx0; v0; tÞ ¼ ebt
ox
ov0

ðx0; v0; tÞ; bðx0; v0; tÞ ¼ ebt
ox
ox0

ðx0; v0; tÞ;

cðx0; v0; tÞ ¼ e3bt
ov
ov0

P 1 �
ox
ov0

P 2

� �
; dðx0; v0; tÞ ¼ e3bt

ox
ox0

P 2 �
ov
ox0

P 1

� �
;

where P1, P2 are given by (1.15) and (1.16) and x(x0,v0,t), v(x0,v0,t) is the solution to (1.9) and (1.10). In

terms of the solution to (1.18) and the inverse functions (1.12) the solution to (1.7) is written
f ðx; v; tÞ ¼ ebtgðx0ðx; v; tÞ; v0ðx; v; tÞ; tÞ: ð1:19Þ

For the periodic problem (1.1) and (1.2) some modifications are made in the formulation given so far. In

(1.18) it is now assumed that 0 6 x0 6 L, and we include the boundary condition g(0,v0,t) = g(L,v0,t). The

boundary condition in v0 is limjv0j ! 1gðx0; v0; tÞ ¼ 0. The first order equation (1.8) is defined for A = {(x,v)/

0 6 x 6 L, �1 < v < 1}. The transformation (1.11) and the inverse (1.12) are regarded as transforma-

tions of A onto A.
Referring now to the nonlinear problem (1.1) and (1.2) the field E(x,t) is given by (1.6). By a change of

variable in the integral based on (1.11) and noting that f(x,v,t) has an expression of the form (1.19)
Z L

0

Z 1

�1
Kðx;�xÞf ð�x; v; tÞdv dx ¼

Z L

0

Z 1

�1
Kðx;�xðy0;w0; tÞÞebtgðy0;w0; tÞ

oð�x; vÞ
oðy0;w0Þ

����
����dy0 dw0

¼
Z L

0

Z 1

�1
Kðx;�xðy0;w0; tÞÞebtgðy0;w0; tÞe�bt dw0 dy0

¼
Z L

0

Z 1

�1
Kðx;�xðy0;w0; tÞÞgðy0;w0; tÞdw0 dy0:
Thus in terms of the solution to (1.18) with periodic boundary conditions the field E(x,t) is expressed as
Eðx; tÞ ¼
Z L

0

Z 1

�1
Kðx;�xðy0;w0; tÞÞgðy0;w0; tÞdw0 dy0 �

Z L

0

Kðx;�xÞhð�xÞd�x: ð1:20Þ
In order to more efficiently solve (1.18) for �1 < v0 < 1 we make a further transformation of independ-

ent variable [4, p. 708]. Let
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v0 ¼
cuffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ; �1 < u < 1; �1 < v0 < 1;

og
ov0

¼ 1

c
ð1� u2Þ3=2 og

ou
;

o2g
ov20

¼ 1=c2ð1� u2Þ3 o
2g
ou2

� 3=c2ð1� u2Þ2u og
ou

¼ ð1� u2Þ3=2

c
o

ou
ð1� u2Þ3=2

c
og
ou

 !
:

Under this transformation the boundary condition of (1.18) for jv0j ! 1 becomes g = 0 at u = ±1.

In terms of the variables x0, u, t, 0 6 x0 6 L, �1 < u < 1, v0ðuÞ ¼ cu=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
, we solve the set of

equations
og
ot

¼ q ðaðx0; v0ðuÞ; tÞÞ2
o
2g
ox20

� 2aðx0; v0ðuÞ; tÞbðx0; v0ðuÞ; tÞ
ð1� u2Þ3=2

c
o
2g

ox0 ou

"

þðbðx0; v0ðuÞ; tÞÞ2
ð1� u2Þ3=2

c
o

ou
ð1� u2Þ3=2

c
og
ou

þ cðx0; v0ðuÞ; tÞ
og
ox0

þ dðx0; v0ðuÞ; tÞ
ð1� u2Þ3=2

c
og
ou

#
;

ð1:21Þ

gðx0; u; 0Þ ¼ f0 x0;
cuffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
� �

; gð0; u; tÞ ¼ gðL; u; tÞ; gðx0;�1; tÞ ¼ gðx0; 1; tÞ ¼ 0;

aðx0; v0ðuÞ; tÞ ¼ ebt
ox
ov0

; bðx0; v0ðuÞ; tÞ ¼ ebt
ox
ox0

; ð1:22Þ

cðx0; v0; tÞ ¼ e3bt
ov
ov0

P 1 �
ox
ov0

P 2

� �
; dðx0; v0; tÞ ¼ e3bt

ox
ox0

P 2 �
ov
ox0

P 1

� �
; ð1:23Þ
where x(x0,v0(u),t), v(x0,v0(u),t) are the solutions to
dx
dt

¼ v; xð0Þ ¼ x0; ð1:24Þ

dv
dt

¼ Eðxðx0; v0ðuÞ; tÞ; tÞ � bv; ð1:25Þ

vð0Þ ¼ v0ðuÞ ¼
cuffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p

and where P1, P2 are given by (1.15) and (1.16) now regarded as functions of x0, u, t.

The integral for the electric field given by (1.20) is transformed as
Z L

0

Z 1

�1
Kðxðx0; v0; tÞ; xðy0;w0; tÞÞgðy0;w0; tÞdw0 dy0

¼
Z L

0

Z 1

�1

Kðxðx0; v0ðuÞ; tÞ; xðy0;w0ð�uÞ; tÞÞgðy0; �u; tÞ
oðy0;w0Þ
oðy0; �uÞ

����
����d�u dy0

¼
Z L

0

Z 1

�1

Kðxðx0; v0ðuÞ; tÞ; xðy0;w0ð�uÞ; tÞÞgðy0; �u; tÞ
c

ð1� �u2Þ3=2
d�u dy0;
since the Jacobian for the change of variable (y0,w0) to ðy0; �uÞ is
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oðy0;w0Þ
oðy0; �uÞ

¼ c

ð1� �u2Þ3=2
: ð1:26Þ
Thus in terms of the solution to (1.21) the function E(x,t) in (1.25) is written
Eðxðx0; v0ðuÞ; tÞ; tÞ ¼
Z L

0

Z 1

�1

Kðxðx0; v0ðuÞ; tÞ; xðy0;w0ð�uÞ; tÞÞgðy0; �u; tÞ
c

ð1� �u2Þ3=2
d�u dy0

�
Z L

0

Kðxðx0; v0ðuÞ; tÞ;�xÞhð�xÞd�x:
If v0 ¼ cuffiffiffiffiffiffiffi
1�u2

p then u ¼ uðv0Þ ¼ v0ffiffiffiffiffiffiffiffiffi
v2
0
þc2

p . The solution to (1.1) is written in terms of the solution to (1.21) and

the inverse transformation (1.12) as
f ðx; v; tÞ ¼ ebtgðx0ðx; v; tÞ; uðv0ðx; v; tÞÞ; tÞ: ð1:27Þ

The functions a(x0,v0(u),t), b(x0,v0(u),t) can be obtained by differentiating (1.24) and (1.25) and solving

the equations
d

dt
ox
ov0

� �
¼ ov

ov0
;

ox
ov0

ð0Þ ¼ 0; ð1:28Þ

d

dt
ov
ov0

� �
¼ oE

ox
ðxðx0; v0ðuÞ; tÞ; tÞ

ox
ov0

� �
� b

ov
ov0

� �
;

ov
ov0

ð0Þ ¼ 1 ð1:29Þ
and
d

dt
ox
ox0

� �
¼ ov

ox0
;

ox
ox0

ð0Þ ¼ 1; ð1:30Þ

d

dt
ov
ox0

� �
¼ oE

ox
ðxðx0; v0ðuÞ; tÞ; tÞ

ox
ox0

� �
� b

ov
ox0

� �
;

ov
ox0

ð0Þ ¼ 0: ð1:31Þ
Then a(x0,v0(u),t), b(x0,v0(u),t) are given by (1.22). By (1.2) oE
ox ðxðx0; v0ðuÞ; tÞ; tÞ ¼ qðxðx0; v0ðuÞ; tÞ; tÞ:

For the coefficients c(x0,v0(u),t), d(x0,v0(u),t) it is, in addition, necessary to solve equations for the second

partial derivatives
d

dt
o
2x

oxs0 ov
r
0

� �
¼ o

2v
oxs0 ov

r
0

;
o
2x

oxs0 ov
r
0

ð0Þ ¼ 0; ð1:32Þ

d

dt
o2v

oxs0 ov
r
0

� �
¼ oE

ox
o2x

oxs0 ov
r
0

� �
� b

o2v
oxs0 ov

r
0

� �
þ o2E

ox2
ox
ox0

� �s
ox
ov0

� �r

;
o2v

oxs0 ov
r
0

ð0Þ ¼ 0; ð1:33Þ

s; r ¼ 0; 1; 2; sþ r ¼ 2:
Then c(x0,v0(u),t), d(x0,v0(u),t) are given by (1.23).

The solution to (1.1) and (1.2) can be given in terms of a sequence of solutions to (1.21). We proceed as
follows: for the time interval [0,T] let T1 be such that T/T1 = M an integer. The interval [0,T] is divided into

subintervals [lT1,(l + 1)T1], l = 0, 1, . . ., M � 1. The relationship between g(x0,u,t) as a solution to (1.21)

and f(x,v,t) as a solution to (1.1) is given by (1.27). We let the time variable be�t so that f ðx; v;�tÞ is the solution
to (1.1) with initial function f0(x,v) and�t 2 ½0; T �. On the time interval lT 1 6�t6 ðlþ 1ÞT 1 let t ¼ �t � lT 1. Then
f ðx; v;�tÞ ¼ ebtgðx0ðx; v; tÞ; uðv0ðx; v; tÞÞ; tÞ; t 2 ½0; T 1� ð1:34Þ
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in which g(x0,u,t) is the solution to (1.21), combined with (1.24), (1.25), (1.28)–(1.33), such that

gðx0; u; 0Þ ¼ f x0; cuffiffiffiffiffiffiffi
1�u2

p ; lT 1

� �
. If l = 0 then f(x,v,lT1) = f0(x,v). If l > 0 then f ðx; v; lT 1Þ ¼ ebT 1gðx0ðx; v; T 1Þ;

uðv0ðx; v; T 1ÞÞ; T 1Þ such that g(x0,u,t) is the solution to (1.21) for t 2 [0,T1] with initial data

gðx0; u; 0Þ ¼ f x0; cuffiffiffiffiffiffiffi
1�u2

p ; ðl� 1ÞT 1

� �
. The numerical method is a discretization of this procedure.
2. The discrete approximation

A method is outlined for approximating the solution to (1.1) and (1.2).

2.1. Partition of phase space and time intervals

Several domains of definition for functions have been defined. Phase space is the (x,v) domain given by
A ¼ fðx; vÞ=06 x6 L; �1 < v < 1g:

The (x0,v0) domain is
A0 ¼ fðx0; v0Þ=06 x0 6 L; �1 < v0 < 1g;

such that x0 = x0(x,v,t), v0 = v0(x,v,t) and (x0(x,v,t), v0(x,v,t)) the functions defined by (1.12). The (x0,u) do-

main is
X ¼ fðx0; uÞ=06 x0 6L; �1 < u < 1g;

such that v0 ¼ cu=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
:

The domain X is partitioned as follows: given integers Nx, Nv let Dx0 = L/Nx, Du = 2/(Nv + 1). Then
x0i ¼ i� 1

2

� �
Dx0; i ¼ 1; . . . ;Nx;

uj ¼ �1þ jDu; j ¼ 1; . . . ;Nv:

ð2:1Þ
Thus the region
ðx0; uÞ=06 x0 6 L; � Nv

Nv þ 1
6 u6

Nv

Nv þ 1

� 

� X
is subdivided into a uniform rectangular grid with ðx0i ; ujÞ the center of the i,j rectangle on the grid. The

region
ðx0; uÞ=06 x0 6 L; �1 < u < � Nv

Nv þ 1
or

Nv

Nv þ 1
< u < 1

� 

is the part of X associated with points at infinity at which the distribution function is zero.

Let
v0j ¼
cujffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q : ð2:2Þ
The point ðx0i ; ujÞ in X corresponds to the point ðx0i ; v0jÞ in A0.

Given the time interval [0,T] let T1 < T be such that MT1 = T for the positive integer M. For positive

integer Ng let Dt = T1/Ng. Then tn = nDt, n = 0, 1, . . ., Ng is a partition of the time interval [0,T1]. Let
sl = lT1 = 0, l = 0, 1, . . .,M and �tk ¼ sl þ tn for k = lNg + n. Eqs. (1.21), (1.24), (1.25), (1.28)–(1.33) are dis-

cretized on the time interval [0,T1] with discrete time parameter, Dt. The approximate distribution function

is reconstructed on a fixed grid at times sl, l = 0, 1, . . .,M. The actual time of the discrete approximation to

(1.1) and (1.2) is given by �tk; k ¼ 0; 1; . . . ;Nt where Nt = MNg.
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2.2. The deterministic particle method on the time interval [0,T1]

2.2.1. The initial data

On the time interval [lT1,(l + 1)T1], l = 0, 1, . . ., M � 1 the solution to (1.1) and (1.2) is obtained by

approximating the solution to (1.21), (1.24), (1.25), (1.28)–(1.33) in which the initial function for (1.21)

is f x0; cuffiffiffiffiffiffiffi
1�u2

p ; lT 1

� �
with f(x,v,t) the solution to (1.1). If l = 0 then f x0; cuffiffiffiffiffiffiffi

1�u2
p ; lT 1

� �
¼ f0 x0; cuffiffiffiffiffiffiffi

1�u2
p

� �
. The ini-

tial function f0(x,v) for (1.1) satisfies Eq. (1.4). In terms of the variables x0, u and given (1.26) then when

l = 0 the initial data for (1.21) satisfies
Z L

0

Z 1

�1

gðx0; u; 0Þ
c

ð1� u2Þ3=2
du dx0 ¼

Z L

0

Z 1

�1

f0 x0;
cuffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
� �

c

ð1� u2Þ3=2
du dx0 ¼

Z L

0

hðx0Þdx0:
Let
�g0i;j ¼ f0ðx0i ; v0jÞ; v0j ¼
cujffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q i ¼ 1; . . . ;Nx; j ¼ 1; . . . ;Nv
and
k ¼
X
i;j

�g0i;j
c

ð1� u2j Þ
3=2

DuDx0

 !
e
X
k

hðxkÞ
 !,

:

Here xk is a point on the Poisson mesh and e is the width of the grid on the Poisson mesh as described in

Section 2.2.6. If g(x0,u,t) is the solution to (1.21) corresponding to the time interval [lT1,(l + 1)T1],

l = 0, 1, . . .,M � 1 then gl;ni;j is the approximation to gðx0i ; uj; tnÞ; n ¼ 0; 1; 2; . . . ;Ng. At l = 0, n = 0 we let
g0;0i;j ¼ �g0i;j=k so that
X

i;j

g0;0i;j
c

ð1� u2j Þ
3=2

DuDx0 ¼ �
X
k

hðxkÞ:
For l > 0 the initial function for (1.21) is gðx0; u; 0Þ ¼ f x0; cuffiffiffiffiffiffiffi
1�u2

p ; lT 1

� �
, with f(x,v,t) the solution to (1.1).

In this case the discrete initial function, gl;0i;j , is obtained by the procedure described in Section 2.3. That is

the solution obtained by the deterministic particle method corresponding to the time interval [(l � 1)T1,lT1]

is reconstructed on the fixed grid on X at time lT1.

2.2.2. The approximation of (1.21)

The approximate solution to (1.21) corresponding to the interval [lT1,(l + 1)T1] is denoted

gl;ni;j ; n ¼ 0; 1; . . . ;Ng. For n = 0 then gl;0i;j is obtained in Section 2.2.1. For tn 2 ½0; T 1� let a(i,j,tn), b(i,j,tn),
c(i,j, tn), d(i,j,tn) be approximations to the coefficients aðx0i ; v0j ; tnÞ; bðx0i ; v0j ; tnÞ; cðx0i ; v0j ; tnÞ; dðx0i ; v0j ; tnÞ in
(1.21). For simplicity we let gl;ni;j ¼ gni;j then given gni;j to get gnþ1

i;j we compute as follows. Let
sj ¼
ð1� u2j Þ

3=2

c
; s0j ¼

ð1� ðuj � 0:5DuÞ2Þ3=2

c
; s1j ¼

ð1� ðuj þ 0:5DuÞ2Þ3=2

c
:� �
The quantity ð1�u2Þ3=2
c

o
ou

ð1�u2Þ3=2
c

og
ou is approximated by
sj s1j
ðgi;jþ1 � gi;jÞ

Du
� s0j

ðgi;j � gi;j�1Þ
Du

� �
=Du ¼ sj

½s1j gi;jþ1 � ðs1j þ s0j Þgi;j þ s0j gi;j�1�
ðDuÞ2

:

Then �gnþ1
i;j is obtained as a solution to the semi-implicit difference equation
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�gnþ1
i;j ¼ gni;j þ qDt aði; j; tnÞ2

�gnþ1
iþ1;j � 2�gnþ1

i;j þ �gnþ1
i�1;j

ðDx0Þ2

 !"

� 2aði; j; tnÞbði; j; tnÞsj
gniþ1;jþ1 � gniþ1;j�1 � gni�1;jþ1 þ gni�1;j�1

ð2Dx0Þð2DuÞ

� �

þ bði; j; tnÞ2sj
ðs1j�gnþ1

i;jþ1 � ðs1j þ s0j Þ�gnþ1
i;j þ s0j�g

nþ1
i;j�1Þ

ðDuÞ2

þcði; j; tnÞ
ðgniþ1;j � gni�1;jÞ

2Dx0
þ dði; j; tnÞsj

ðgni;jþ1 � gni;j�1Þ
2Du

�
: ð2:3Þ
If i = 1 then �gnþ1
i�1;j ¼ �gnþ1

Nx;j
, if i = Nx then �gnþ1

iþ1;j ¼ �gnþ1
1;j which is the periodic boundary condition in x0. If j = 1

then in �gnþ1
i;j�1 ¼ 0 and if j = Nv then �gnþ1

i;jþ1 ¼ 0 which is the zero boundary condition at u = ±1.
One way to solve (2.3) for �gnþ1

i;j given that gni;j is known is to use an iterative procedure. Let r1 = Dt/(Dx0)
2,

r2 = Dt/(Du)2, p1 = Dt/(2Dx0), p2 = Dt/(2Du), and let ai,j = a(i, j,tn) and similarly for bi,j, ci,j, di,j. Then (2.3) is

written
ð1þ 2qr1a
2
i;j þ qr2b

2
i;jðs1j þ s0j ÞÞ�gnþ1

i;j ¼ qr1a
2
i;jð�gnþ1

iþ1;j þ �gnþ1
i�1;jÞ þ qr2b

2
i;jsjðs1j�gnþ1

i;jþ1 þ s0j�g
nþ1
i;j�1Þ þ F n

i;j;
where
F n
i;j ¼ gni;j �

1

2
q
ffiffiffiffiffiffiffiffi
r1r2

p
ai;jbi;jsjðgniþ1;jþ1 � gniþ1;j�1 � gni�1;jþ1 þ gni�1;j�1Þ þ qp1ci;jðgniþ1;j � gni�1;jÞ

þ qp2di;jsjðgni;jþ1 � gni;j�1Þ:
Let Di;j ¼ 1þ 2qr1a
2
i;j þ qr2b

2
i;jsjðs1j þ s0j Þ then
�gnþ1
i;j ¼

qr1a
2
i;j

Di;j
ð�gnþ1

iþ1;j þ �gnþ1
i�1;jÞ þ

qr2b
2
i;j

Di;j
sjðs1j�gnþ1

i;jþ1 þ s0j�g
nþ1
i;j�1Þ þ

1

Di;j
F n

i;j: ð2:4Þ
Given gni;j, that determines F n
i;j then (2.4) can be solved iteratively to obtain for �gnþ1

i;j . Let h0i;j ¼ gni;j. Then for

k = 0, 1, 2, . . .
hkþ1
i;j ¼

qr1a
2
i;j

Di;j
ðhkiþ1;j þ hki�1;jÞ þ

qr2b
2
i;j

Di;j
sjðs1j hki;jþ1 þ s0j h

k
i;j�1Þ þ

1

Di;j
F n

i;j: ð2:5Þ
The above iterative procedure referred to as the Jacobi method is convergent. In fact
jhkþ1
i;j � hki;jj6

qr1a
2
i;j

Di;j
ðjhkiþ1;j � hk�1

iþ1;jj þ jhki�1;j � hk�1
i�1;jjÞ þ

qr2b
2
i;j

Di;j
sjðs1j jhki;jþ1 � hk�1

i;jþ1j þ s0j jhki;j�1 � hk�1
i;j�1jÞ:
Letting khkk ¼ maxi;jjhki;jj and
HðtnÞ ¼ max
i;j

2qr1a
2
i;j þ qr2b

2
i;jsjðs1j þ s0j Þ

Di;j

 !
;

then
khkþ1 � hkk6HðtnÞkhk � hk�1k:

Since 0 < H(tn) < 1 the sequence fhki;jg converges uniformly in i,j and limk!1h

k
i;j ¼ �gnþ1

i;j :
The method used to accelerate the convergence rate of the iterative procedure (2.5) is SOR (successive

overrelaxation). Here the updated value of hi,j is used in the iterative procedure as soon as it is available.
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In addition an extrapolation is carried out based on the updated hi,j and its previous value. Thus for i > 1

and j > 1 instead of (2.5) we compute
�h
kþ1

i;j ¼
qr1a

2
i;j

Di;j
ðhkiþ1;j þ hkþ1

i�1;jÞ þ
qr2b

2
i;j

Di;j
sjðs1j hki;jþ1 þ s0j h

kþ1
i;j�1Þ þ

1

Di;j
F n

i;j ð2:6Þ
and
hkþ1
i;j ¼ x�h

kþ1

i;j þ ð1� xÞhki;j; ð2:7Þ
with x > 1. A precise determination of the overrelaxation parameter, x, is based on the eigenvalues, k, that
satisfy
qr1a
2
i;j

Di;j
ðhiþ1;j þ hi�1;jÞ þ

qr2b
2
i;j

Di;j
sjðs1j hi;jþ1 þ s0j hi;j�1Þ ¼ khi;j: ð2:8Þ
For kmax the maximal eigenvalue then following the theory in [2] the optimal x is determined through the

formula
xb ¼
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2max

q :
We determine computationally that H(tn) can be a good approximation to kmax so for present purposes the

optimal x is computed as
xb ¼
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�HðtnÞ2

q :
A direct method that can be used for solving (2.3) is the Douglas–Rachford method as described in [16].

Let r1 = Dt/(Dx0)
2, r2 = Dt/(Du)2, p1 = Dt/(2Dx0), p2 = Dt/(2Du), and
d2xgi;j ¼ giþ1;j � 2gi;j þ gi�1;j; d2ugi;j ¼ sjs1j gi;jþ1 � sjðs1j þ s0j Þgi;j þ sjs0j gi;j�1;

d0;xgi;j ¼ giþ1;j � gi�1;j; d0;ugi;j ¼ sjðgi;jþ1 � gi;j�1Þ;
ai,j = a(i, j,tn) and similarly for bi,j, ci,j, di,j. The difference equation is written
ð1� qa2i;jr1d
2
x � qb2i;jr2d

2
uÞ�gnþ1

i;j ¼ 1� 1

2
qai;jbi;j

ffiffiffiffiffiffiffiffi
r1r2

p
d0;xd0;u þ qci;jp1d0;x þ qdi;jp2d0;u

� �
gni;j: ð2:9Þ
Eq. (2.9) is replaced by
ð1� qa2i;jr1d
2
xÞð1� qb2i;jr2d

2
uÞ�gnþ1

i;j ¼ 1þ q2a2i;jb
2
i;jr1r2d

2
xd

2
u �

1

2
qai;jbi;j

ffiffiffiffiffiffiffiffi
r1r2

p
d0;xd0;u þ qci;jp1d0;x þ qdi;jp2d0;u

� �
gni;j:

ð2:10Þ

Effectively the term q2a2i;jb

2
i;jr1r2d

2
xd

2
u�g

nþ1
i;j is added to the left side of (2.9) and is balanced by the term

q2a2i;jb
2
i;jr1r2d

2
xd

2
ug

n
i;j added to the right side of the equation. Eq. (2.10) is equivalent to
ð1� qa2i;jr1d
2
xÞg�i;j ¼ 1þ qb2i;jr2d

2
u �

1

2
qai;jbi;j

ffiffiffiffiffiffiffiffi
r1r2

p
d0;xd0;u þ qci;jp1d0;x þ qdi;jp2d0;u

� �
gni;j; ð2:11Þ

ð1� qb2i;jr2d
2
uÞ�gnþ1

i;j ¼ g�i;j � qb2i;jr2d
2
ug

n
i;j: ð2:12Þ
Thus given gni;j to get �gnþ1
i;j one solves (2.11) in the index i for each j to obtain the array g�i;j. Then (2.12) is

solved in the index j for each i to obtain �gnþ1
i;j :
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According to (1.5) the solution to (1.1) satisfies
Z L

0

Z 1

�1
f ðx; v; tÞdv dx ¼

Z L

0

hðxÞdx:
In terms of the solution to (1.21) this condition is
Z L

0

Z 1

�1

gðx0; u; tÞ
c

ð1� u2Þ3=2
du dx0 ¼

Z L

0

hðx0Þdx0:
Thus in the discrete method we let
k ¼
X
i;j

c

ð1� u2j Þ
3=2

�gnþ1
i;j Dx0Du

 !
�
X
k

hðxkÞ
 !,
and then gnþ1
i;j ¼ gl;nþ1

i;j ¼ �gnþ1
i;j =k so that
X

i;j

gl;nþ1
i;j

c

ð1� u2j Þ
3=2

DuDx0 ¼ �
X
k

hðxkÞ: ð2:13Þ
The purpose for the renormalization of gl;ni;j is to maintain Eq. (2.13) at each step so as to preserve charge

neutrality in the approximation of the Poisson equation.

For relatively small q the more efficient method for approximating the solution to (1.21) is the iterative
procedure (SOR) rather than the direct method. This is because decreasing q decreases the value H(tn)

which governs the rate of convergence of the iterative procedure. Thus for small values of q the SOR meth-

od converges to a desired degree of accuracy with relatively few iterations. For the computations of Section

3 the SOR method is used. The iteration sequence is stopped when ihk � hk� 1i 6 c with c = 10�8 to 10�11

depending on the computation.

2.2.3. Approximation of (1.24) and (1.25), particle trajectories

For tn 2 [0,T1] let ðxðx0i ; v0j ; tnÞ; vðv0i ; v0j ; tnÞÞ; v0j ¼ cuj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q� �
be the solution to (1.24) and (1.25) at

time tn with initial point ðx0i ; v0jÞ. The approximation to this trajectory is denoted x(i, j, tn),v(i, j, tn). The

approximation to the electric field Eðxðx0i ; v0j ; tnÞ; tnÞ is denoted Eðxði; j; tnÞ; tnÞ. Then at time tn given

x(i, j, tn),v(i, j, tn) and Eðxði; j; tnÞ; tnÞ to get x(i, j, tn+1),v(i, j, tn+1) we solve for tn 6 t 6 tn + 1
dx
dt

¼ v; xðtnÞ ¼ xði; j; tnÞ; ð2:14Þ

dv
dt

¼ Eðxði; j; tnÞ; tnÞ � bv; vðtnÞ ¼ vði; j; tnÞ: ð2:15Þ
Equivalently we can solve for 0 6 t 6 Dt
d~x
dt

¼ ~v; ~xð0Þ ¼ xði; j; tnÞ; ð2:16Þ

d~v
dt

¼ Eðxði; j; tnÞ; tnÞ � b~v; ~vð0Þ ¼ vði; j; tnÞ: ð2:17Þ
Then xði; j; tnþ1Þ ¼ ~xðDtÞ; vði; j; tnþ1Þ ¼ ~vðDtÞ. The solution to (2.16) and (2.17) is
~xðDtÞ ¼ xði; j; tnÞ þ
ð1� e�bDtÞ

b
vði; j; tnÞ þ

Dt
b
� ð1� e�bDtÞ

b2

� �
Eðxði; j; tnÞ; tnÞ;
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~vðDtÞ ¼ e�bDtvði; j; tnÞ þ
ð1� e�bDtÞ

b
Eðxði; j; tnÞ; tnÞ:
Therefore, to obtain particle trajectories let xði; j; 0Þ ¼ x0i ; vði; j; 0Þ ¼ v0j . Then given x(i, j, tn), v(i, j, tn), and

Eðxði; j; tnÞ; tnÞ quantities at time tn+1 are
xði; j; tnþ1Þ ¼ xði; j; tnÞ þ
ð1� e�bDtÞ

b
vði; j; tnÞ þ

Dt
b
� ð1� e�bDtÞ

b2

� �
Eðxði; j; tnÞ; tnÞ; ð2:18Þ

vði; j; tnþ1Þ ¼ e�bDtvði; j; tnÞ þ
ð1� e�bDtÞ

b
Eðxði; j; tnÞ; tnÞ: ð2:19Þ
2.2.4. Approximation of (1.28)–(1.31), coefficients a(i, j, tn), b(i, j, tn)

Along the trajectory xðx0i ; v0j ; tÞ; vðx0i ; v0j ; tÞ; v0j ¼ cuj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q� �
, the solution to (1.28) and (1.29) is de-

noted ox
ov0

ðx0i ; v0j ; tÞ; ov
ov0

ðx0i ; v0j ; tÞ. The approximations to these quantities at time tn 2 [0,T1] are denoted
ox
ov0

ði; j; tnÞ; ov
ov0

ði; j; tnÞ and similarly for ox
ox0

ði; j; tnÞ; ov
ox0

ði; j; tnÞ. The equations for the approximate first partial

derivatives are obtained by differentiating (2.18) and (2.19) with respect to x0 and v0. The coefficients

a(i, j, tn), b(i, j, tn) are therefore obtained as follows: at tn=0
ox
ox0

ði; j; 0Þ ¼ 1;
ov
ox0

ði; j; 0Þ ¼ 0;
ox
ov0

ði; j; 0Þ ¼ 0;
ov
ov0

ði; j; 0Þ ¼ 1;

aði; j; 0Þ ¼ ox
ov0

ði; j; 0Þ; bði; j; 0Þ ¼ ox
ox0

ði; j; 0Þ:
Then given values of ox
ox0

ði; j; tnÞ; ov
ox0

ði; j; tnÞ; ox
ov0

ði; j; tnÞ; ov
ov0

ði; j; tnÞ quantities at time tn+1 are computed by
ðiÞ ox
ox0

ði; j; tnþ1Þ ¼
ox
ox0

ði; j; tnÞ þ
ð1� e�bDtÞ

b
ov
ox0

ði; j; tnÞ þ
Dt
b
� ð1� e�bDtÞ

b2

� �
oE
ox

�ðxði; j; tnÞ; tnÞ
ox
ox0

ði; j; tnÞ; ð2:20Þ

ðiiÞ ov
ox0

ði; j; tnþ1Þ ¼ e�bDt ov
ox0

ði; j; tnÞ þ
ð1� e�bDtÞ

b
oE
ox

ðxði; j; tnÞ; tnÞ
ox
ox0

ði; j; tnÞ; ð2:21Þ

ðiiiÞ ox
ov0

ði; j; tnþ1Þ ¼
ox
ov0

ði; j; tnÞ þ
ð1� e�bDtÞ

b
ov
ov0

ði; j; tnÞ þ
Dt
b
� ð1� e�bDtÞ

b2

� �
oE
ox

�ðxði; j; tnÞ; tnÞ
ox
ov0

ði; j; tnÞ; ð2:22Þ

ðivÞ ov
ov0

ði; j; tnþ1Þ ¼ �e�bDt ov
ov0

ði; j; tnÞ þ
ð1� e�bDtÞ

b
oE
ox

ðxði; j; tnÞ; tnÞ
ox
ov0

ði; j; tnÞ ð2:23Þ
and
aði; j; tnþ1Þ ¼ ebtnþ1
ox
ov0

ði; j; tnþ1Þ; bði; j; tnþ1Þ ¼ ebtnþ1
ox
ox0

ði; j; tnþ1Þ:
The quantity oE
ox ðx; tnÞ is defined in Section 2.2.6.
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2.2.5. The approximation of (1.32) and (1.33), coefficients c(i, j, tn), d(i, j, tn)

Along the trajectory xðx0i ; v0j ; tÞ; vðx0i ; v0j ; tÞ; v0j ¼ cuj=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q� �
, the solution to (1.32) and (1.33) is de-

noted o2x
oxs

0
ovr

0

ðx0i ; v0j ; tÞ; o2v
oxs

0
ovr

0

ðx0i ; v0j ; tÞ. The approximations to these quantities at time t 2 [0,T1] are denoted
o2x

oxs
0
ovr

0

ði; j; tnÞ; o2x
oxs

0
ovr

0

ði; j; tnÞ. The equations for the second partial derivatives are obtained by taking second

derivatives of (2.18) and (2.19) with respect to x0, v0. Thus, let
o
2x

oxs0 ov
r
0

ði; j; 0Þ ¼ 0;
o
2x

oxs0 ov
r
0

ði; j; 0Þ ¼ 0; cði; j; 0Þ ¼ 0; dði; j; 0Þ ¼ 0:
Then given quantities at time tn quantities at time tn+1 are computed by
ðiÞ o2x
oxs0 ov

r
0

ði; j; tnþ1Þ ¼
o2x

oxs0 ov
r
0

ði; j; tnÞ þ
ð1� e�bDtÞ

b
o2v

oxs0 ov
r
0

ði; j; tnÞ

þ Dt
b
� ð1� e�bDtÞ

b2

� �
oE
ox

ðxði; j; tnÞ; tnÞ
o
2x

oxs0 ov
r
0

ði; j; tnÞ

þ Dt
b
� ð1� e�bDtÞ

b2

� �
o2E
ox2

ðxði; j; tnÞ; tnÞ
ox
ox0

� �s
ox
ov0

� �r

ði; j; tnÞ; ð2:24Þ

ðiiÞ o2v
oxs0 ov

r
0

ði; j; tnþ1Þ ¼ e�bDt o2v
oxs0 ov

r
0

ði; j; tnÞ þ
ð1� e�bDtÞ

b
oE
ox

ðxði; j; tnÞ; tnÞ
o2x

oxs0 ov
r
0

ði; j; tnÞ

þ ð1� e�bDtÞ
b

o2E
ox2

ðxði; j; tnÞ; tnÞ
ox
ox0

� �s
ox
ov0

� �r

ði; j; tnÞ; ð2:25Þ

r; s ¼ 0; 1; 2; r þ s ¼ 2
and
cði; j; tnþ1Þ ¼ e3btnþ1
ov
ov0

P 1 �
ox
ov0

P 2

� �
ði; j; tnþ1Þ;

dði; j; tnþ1Þ ¼ e3btnþ1
ox
ox0

P 2 �
ov
ox0

P 1

� �
ði; j; tnþ1Þ;
where
P 1 ¼ � o
2x

ox20

ox
ov0

� �2

þ 2
o
2x

ox0 ov0

ox
ov0

� �
ox
ox0

� �
� o

2x
ov20

ox
ox0

� �2
" #

ði; j; tnþ1Þ;

P 2 ¼ � o
2v

ox20

ox
ov0

� �2

þ 2
o
2v

ox0 ov0

ox
ov0

� �
ox
ox0

� �
� o

2v
ov20

ox
ox0

� �2
" #

ði; j; tnþ1Þ:
The quantity o2E
ox2 ðx; tnÞ is defined in Section 2.2.6.

2.2.6. The approximation of the charge density and electric field

An approximate trajectory x(i, j, tn), v(i, j, tn), tn 2 [0,T1], n = 0, 1, 2, . . ., Ng can be considered the path of

an element of charge, qi,j, in phase space. This element of charge can be defined as

qi;j ¼ �f ðxði; j; tnÞ; vði; j; tnÞ; tnÞDAi;j where �f is the approximate distribution function and DAi,j is a differential

area of phase space associated with the i, j trajectory at time tn. In terms of the differential of area in x0, u

space then



616 S. Wollman, E. Ozizmir / Journal of Computational Physics 202 (2005) 602–644
DAi;j �
c

ð1� u2j Þ
3=2

expð�btnÞDx0Du:
Also on the time intervals [lT1,(l + 1)T1], l = 0,1, . . . ,M � 1
�f ðxði; j; tnÞ; vði; j; tnÞ; tnÞ ¼ expðbtnÞgl;ni;j :
Thus
ql;ni;j ¼ expðbtnÞgl;ni;j
c

ð1� u2j Þ
3=2

expð�btnÞDx0Du ¼
cgl;ni;j

ð1� u2j Þ
3=2

Dx0Du: ð2:26Þ
It is convenient to define a discrete charge density as
~qðx; tnÞ ¼
X
i;j

ql;ni;j dðx� xði; j; tnÞÞ � hðxÞ;
where d(x) is the Dirac delta function.

We approximate the solution to
o2/
ox2

¼ qðx; tÞ; /ð0; tÞ ¼ /ðL; tÞ ¼ 0
by the particle-in-cell method. Let Np be a positive integer and � = L/NP. The interval [0,L] is then parti-

tioned as xk = k�, k = 0, 1, . . ., Np which gives a uniform grid of width �. Then let w(x) be a continuous func-

tion with compact support such that
Z 1

�1
wðxÞdx ¼ 1;

X
i2z

wðx� iÞ ¼ 1; z� integers
and set w�ðxÞ ¼ 1
�
w x

�

� �
. The grid charge density qk(tn), k = 0, . . ., Np is then determined as follows: if

supp w�(x � xk) 2 [0,L] then
qkðtnÞ ¼
Z L

0

w�ðx� xkÞ~qðx; tnÞdx ¼
X
i;j

ql;ni;j w�ðxði; j; tnÞ � xkÞ � hðxkÞ:
Near the endpoints of the interval this formula is modified according to the periodicity of the solution. Gi-

ven the normalization of gl;ni;j previously described it follows that �
P

kqkðtnÞ ¼ 0.

For the potential at the grid points we solve
/kþ1 � 2/k þ /k�1

�2
¼ qkðtnÞ; k ¼ 1; . . . ;Np � 1;

/0 ¼ 0; /Np
¼ 0:
The electric field at the grid points, xk, for k = 1, . . ., Np � 1 is obtained as
EkðtnÞ ¼
/kþ1 � /k�1

2�
:

For the problems we study it can be determined analytically that E(0,t) = E(L,t) = 0. Therefore, for k = 0

and k = Np we set E0ðtnÞ ¼ ENpðtnÞ ¼ 0. We also compute
DEkðtnÞ ¼
Ekþ1ðtnÞ � Ek�1ðtnÞ

2�
; D2EkðtnÞ ¼

Ekþ1ðtnÞ � 2EkðtnÞ þ Ek�1ðtnÞ
�2

:

The approximate field Eðx; tnÞ and its derivatives are then defined as continuous functions of x
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Eðx; tnÞ ¼ �
XNp

k¼0

EkðtnÞw�ðx� xkÞ; ð2:27Þ

oE
ox

ðx; tnÞ ¼ �
XNp

k¼0

DEkðtnÞw�ðx� xkÞ; ð2:28Þ

o2E
ox2

ðx; tnÞ ¼ �
XNp

k¼0

D2EkðtnÞw�ðx� xkÞ: ð2:29Þ
A particular function w(x) used in the present computation is
wðxÞ ¼

1
2

3
2
þ x

� �2
; � 3

2
6 x6 � 1

2
;

3
4
� x2; � 1

2
6 x6 1

2
;

1
2

3
2
� x

� �2
; 1

2
6 x6 3

2
;

0; jxj > 3
2
:

8>>>><
>>>>:
The function w(x) is of class C1.

2.3. Regriding the solution

At times sl+1 = (l + 1)T1, l = 0, 1, . . ., M � 1 the solution along particle trajectories is interpolated onto

the fixed grid given by (2.1). We set tn = 0, and the particle method is restarted with the initial data being the

interpolated solution at time sl+1. The regriding is carried out so as to preserve the total charge, momen-

tum, and kinetic energy of the solution. Our method for doing this is motivated by the procedure in [13]. At

time slþ1 ¼ lT 1 þ tNg ¼ ðlþ 1ÞT 1 the i
0
,j

0
trajectory has coordinates in phase space given by

ðxði0; j0; tNgÞÞ; vði0; j0; tNgÞ. These coordinates in phase space correspond to coordinates (xp,up) in X where

xp ¼ xði0; j0; tNgÞ and up ¼ vði0; j0; tNgÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ vði0; j0; tNgÞ

2
q

. The charge along the i
0
,j

0
trajectory is given by

(2.26) and is ql;Ng

i0 ;j0 . Referring to the partition of X given by (2.1) we assume indices i and j such that

x0i 6 xp 6 x0iþ1
and uj 6 up 6 uj+1 with ðx0i ; ujÞ a grid point given by (2.1). Corresponding to ðx0i ; ujÞ, in

X is the point ðx0i ; v0jÞ in A0 where v0j ¼ cuj=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q
Þ. The charge ql;Ng

i0 ;J 0 is distributed between the eight

grid points with indices (i, j � 1), (i, j), (i, j + 1), (i, j + 2), (i + 1, j � 1), (i + 1, j), (i + 1, j+1), (i + 1, j + 2).

Let ai,j(i
0
, j

0
) be the charge contributed to the i, j grid point in X from the charge ql;Ng

i0;j0 . We determine the

ai,j(i
0
, j

0
) as follows: let P1 = (xp � xi)/Dx0, P2 = 1 � P1, then qL ¼ P 2ðql;Ng

i0 ;j0 Þ; qR ¼ P 1ðql;Ng

i0;j0 Þ. Thus qL is

charge distributed to the left of xp and qR is charge distributed to the right of xp. Let zL = qL/2 and y1,

y2, y3 be the solution to
y1 þ y2 þ y3 ¼ zL;

v0j�1
y1 þ v0j y2 þ v0jþ1

y3 ¼ vði0; j0; tNgÞzL;
ðv0j�1

Þ2y1 þ ðv0jÞ
2y2 þ ðv0jþ1

Þ2y3 ¼ ðvði0; j0; tNgÞÞ
2zL

ð2:30Þ
and z1, z2, z3 be the solutions to
z1 þ z2 þ z3 ¼ zL;

v0j z1 þ v0jþ1
z2 þ v0jþ2

z3 ¼ vði0; j0; tNgÞzL;
ðv0jÞ

2z1 þ ðv0jþ1
Þ2z2 þ ðv0jþ2

Þ2z3 ¼ ðvði0; j0; tNgÞÞ
2zL:

ð2:31Þ
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The charge distributed to points in X with coordinates ðx0i ; ukÞ; k ¼ j� 1; . . . ; jþ 2 is
ai;j�1ði0; j0Þ ¼ y1; ai;jði0; j0Þ ¼ y2 þ z1; ai;jþ1ði0; j0Þ ¼ y3 þ z2; ai;jþ2ði0; j0Þ ¼ z3: ð2:32Þ

The charge distributed to points in X with coordinates ðx0iþ1

; ukÞ, k = j � 1, . . ., j + 2 is obtained by
replacing zL in Eqs. (2.30) and (2.31) with zR = qR/2 and computing the y1, y2, y3, z1, z2, z3 accordingly.

Then replacing i with i + 1 in Eqs. (2.32) we obtain ai+1,j� 1(i
0
, j

0
), ai+1,j(i

0
, j

0
), ai+1,j+1(i

0
, j

0
), ai+1,j+2(i

0
, j

0
).

Summing over all particle trajectories gives the total charge at the i,j grid point in X, that is
qlþ1;0
i;j ¼

X
i0 ;j0

ai;jði0; j0Þ:
Let daj ¼ cDx0Du=ðl� u2j Þ
3=2

then glþ1;0
i;j ¼ qlþ1;0

i;j =daj. The grid function glþ1;0
i;j is the initial data for (2.3) for

the time interval [(l + 1)T1,(l + 2)T1].

One can verify that
X
i;j
glþ1;0
i;j

cDx0Du

ð1� u2j Þ
3=2

¼
X

i;j
gl;Ng
i;j

cDx0Du

ð1� u2j Þ
3=2

;

X
i;j
v0jg

lþ1;0
i;j

cDx0Du

ð1� u2j Þ
3=2

¼
X

i;j
vði; j; tNgÞg

l;Ng
i;j

cDx0Du

ð1� u2j Þ
3=2

;

X
i;j
ðv0jÞ

2glþ1;0
i;j

cDx0Du

ð1� u2j Þ
3=2

¼
X

i;j
ðvði; j; tNgÞÞ

2gl;Ng
i;j

cDx0Du

ð1� u2j Þ
3=2

: ð2:33Þ
That is the charge, momentum, and kinetic energy integrals are preserved by the regriding process.
The primary purpose of the regriding of the solution is to improve the long term stability and accuracy

of the numerical method. The coefficients a, . . ., d in (1.21) grow with time. For sufficiently large t the coef-

ficients become large in magnitude, and this causes inaccuracies and instabilities to develop in the numerical

method. The solution to this problem is to limit the time interval on which the deterministic particle method

is applied. Thus the computed solution is periodically reconstructed on the fixed grid, and the particle meth-

od is then restarted with tn = 0.

2.4. The solution on the time interval [0,T]

The quantities used to represent the solution at times �t 2 ½0; T � are the electrostatic energy defined as
eseð�tÞ ¼ 1

2

Z L

0

ðEðx;�tÞÞ2 dx; ð2:34Þ
the kinetic energy
keð�tÞ ¼ 1

2

Z L

0

Z 1

�1
v2f ðx; v;�tÞdv dx ð2:35Þ
and the free energy defined as
FEð�tÞ ¼ eseð�tÞ þ keð�tÞ � q=bentð�tÞ; ð2:36Þ

where entð�tÞ is the entropy of the system given by
entð�tÞ ¼ �
Z L

0

Z 1

�1
f ðx; v;�tÞ lnðf ðx; v;�tÞÞdv dx:
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For �t 2 ½lT 1; ðlþ lÞT 1� then according to (1.34) f ðx; v;�tÞ has a representation as f ðx; v;�tÞ ¼ ebtgðx0ðx; v; tÞ;
uðv0ðx; v; tÞÞ; tÞ with t 2 [0,T1]. In terms of the function g(x0,u,t) and given (1.17) and (1.26) then
keð�tÞ ¼ 1

2

Z L

0

Z 1

�1

ðvðx0; v0ðuÞ; tÞÞ2gðx0; u; tÞ
c

ð1� u2Þ3=2
du dx0
and
entð�tÞ ¼ �
Z L

0

Z 1

�1

gðx0; u; tÞ lnðebtgðx0; u; tÞÞ
c

ð1� u2Þ3=2
du dx0:
For discretized versions of these quantities let �tk ¼ sl þ tn where sl = lT1, l = 0, 1, . . .,M, tn = nDt,
n = 0, 1, . . ., Ng and k = lNg + n. Then in terms of the discrete trajectories (2.18) and (2.19) and the approx-

imation to (1.21)
keð�tkÞ ¼
1

2

X
i;j

ðvði; j; tnÞÞ2gl;ni;j
c

ð1� u2j Þ
3=2

DuDx0; ð2:37Þ

entð�tkÞ ¼ �
X
i;j

gl;ni;j lnðebtngl;ni;j Þ
c

ð1� u2j Þ
3=2

DuDx0: ð2:38Þ
To compute the electrostatic energy the particle trajectories given by (2.18) and (2.19) are ordered by

the x coordinates as 0 < x1 6 � � � 6 xi � � � 6 xN < L, N = Nx · Nv. Each xi represents the position of a

particle, Eðxi; tnÞ is the electric field at the particle position at time �tk ¼ sl þ tn, and Dxi = xi+1 � xi.

Then
eseð�tkÞ ¼
1

2

XN�1

i¼1

Eðxi; tnÞ þ Eðxiþ1; tnÞ
2

� �2

Dxi: ð2:39Þ
At times �tk ¼ sl the solution along trajectories is reconstructed on the fixed grid. At these times the ese,

ke, and FE are computed based on the reconstructed solution. So, for example,
keðslÞ ¼
1

2

X
i;j

ðv0jÞ
2gl;0i;j

c

ð1� u2j Þ
3=2

DuDx0:
According to (2.33) the reconstructed solution preserves kinetic energy. Thus the ke graph maintains con-
tinuity in time. However, the quantities ese and ent are not preserved under the regriding and so the ese and

FE graphs can exhibit discontinuities at the regriding points.

2.4.1. Summary of numerical method

Given the time interval [0,T] let T1 > 0 be such that T/T1 = M an integer. Then for positive integers Nx,

Nv, Ng, Np let Dx0 = L/Nx, Du = 2/(Nv + 1), Dt = T1/Ng, e = L/Np. Grid points ðx0i ; ujÞ and ðx0i ; v0jÞ are given
by
x0i ¼ i� 1

2

� �
Dx0; i ¼ 1; . . . ;Nx;

uj ¼ �1þ jDu; v0j ¼
cujffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q ; j ¼ 1; . . . ;Nv:
The time interval [0,T1] is partitioned as tn = nDt, n = 0, 1, 2, . . ., Ng.

The Poisson mesh is given as xk = k�, k = 0, 1, . . ., Np.

For l = 0, 1, . . .,M let sl = lT1 and for k = lNg + n let �tk ¼ sl þ tn:
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(1) at l = 0, n = 0, that is, sl=0, tn=0:
�g0i;j ¼ f0ðx0i ; v0jÞ ¼ f x0i ;
cujffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q
0
B@

1
CA; k ¼

X
i;j

�g0i;j
c

ð1� u2j Þ
3=2

Dx0Du

 !
= �

X
k

hðxkÞ
 !
and g0;0i;j ¼ �g0i;j=k.

(2) at lP 0, n = 0, that is, sl = lT1, tn = 0:
xði; j; 0Þ ¼ x0i ; vði; j; 0Þ ¼ v0j ;

ox
ox0

ði; j; 0Þ ¼ 1;
ov
ox0

ði; j; 0Þ ¼ 0;
ox
ov0

ði; j; 0Þ ¼ 0;
ov
ov0

ði; j; 0Þ ¼ 1;

aði; j; 0Þ ¼ ox
ov0

ði; j; 0Þ ¼ 0; bði; j; 0Þ ¼ ox
ox0

ði; j; 0Þ ¼ 1;

o2x
oxs0 ov

r
0

ði; j; 0Þ ¼ 0;
o2x

oxs0 ov
r
0

ði; j; 0Þ ¼ 0; r; s ¼ 0; 1; 2; r þ s ¼ 2;

cði; j; 0Þ ¼ 0; dði; j; 0Þ ¼ 0:
Values of gl;0i;j are given from (1) if l = 0 or from (4) if l > 0. The i, jth charge is
ql;0i;j ¼ gl;0i;j
c

ð1� u2j Þ
3=2

Dx0Du:
(3) For a given time sl = lTl, l = 0, 1, . . .,M � 1:

For tn, n = 0, 1, 2, . . ., Ng � 1 we assume values for gl;ni;j , xði; j; tnÞ, vði; j; tnÞ, ox
ox0

ði; j; tnÞ, ov
ox0

ði; j; tnÞ,
ox
ov0

ði; j; tnÞ, ov
ov0

ði; j; tnÞ, aði; j; tnÞ, bði; j; tnÞ, o2x
oxs

0
ovr

0

ði; j; tnÞ, o2x
oxs

0
ovr

0

ði; j; tnÞ, cði; j; tnÞ, dði; j; tnÞ, and ql;ni;j . The solution
to the Poisson equation is approximated by the method of Section 2.2.6. The computations in the paper are

done with Np = Nx. The electric field, Eðxði; j; tnÞ; tnÞ, and derivatives oE
ox ðxði; j; tnÞ; tnÞ; o2E

ox2 ðxði; j; tnÞ; tnÞ are

computed at particle positions from (2.27)–(2.29). The solution values of eseð�tkÞ, keð�tkÞ, and FEð�tkÞ are

computed as in Section 2.4 with k = lNg + n, �tk ¼ lT 1 þ tn.
Then at time tn+1

(i) �gnþ1
i;j is computed from (2.3), k ¼ ð

P
i;j�g

nþ1
i;j

c
ð1�u2j Þ

3=2 Dx0DuÞ=ð�
P

khðxkÞÞ; and gl;nþ1
i;j ¼ �gnþ1

i;j =k.
(ii) x(i, j,tn+1), v(i, j,tn+1) are computed from (2.18) and (2.19).

(iii) ox
ox0

ði; j; tnþ1Þ; ov
ox0

ði; j; tnþlÞ; ox
ov0

ði; j; tnþ1Þ; ov
ov0

ði; j; tnþ1Þ are computed from (2.20)–(2.23),
aði; j; tnþ1Þ ¼ expðbtnþ1Þ
ox
ov0

ði; j; tnþ1Þ; bði; j; tnþ1Þ ¼ expðbtnþ1Þ
ox
ox0

ði; j; tnþ1Þ:
(iv) o2x
oxs

0
ovr

0

ði; j; tnþ1Þ; o2v
oxs

0
ovr

0

ði; j; tnþ1Þ, are computed from (2.24) and (2.25),
cði; j; tnþ1Þ ¼ e3btnþ1
ov
ov0

P 1 �
ox
ov0

P 2

� �
ði; j; tnþ1Þ;

dði; j; tnþ1Þ ¼ e3btnþ1
ox
ox0

P 2 �
ov
ox0

P 1

� �
ði; j; tnþ1Þ;
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where
P 1 ¼ � o2x
ox20

ox
ov0

� �2

þ 2
o2x

ox0 ov0

ox
ov0

� �
ox
ox0

� �
� o2x
ov20

ox
ox0

� �2
" #

ði; j; tnþ1Þ;

P 2 ¼ � o2v
ox20

ox
ov0

� �2

þ 2
o2v

ox0 ov0

ox
ov0

� �
ox
ox0

� �
� o2v
ov20

ox
ox0

� �2
" #

ði; j; tnþ1Þ:
(v) The charge at the i, jth trajectory is ql;nþ1
i;j ¼ gl;nþ1

i;j
c

ð1�u2j Þ
3=2 DuDx0:

(4) For n ¼ Ng; tNg ¼ T 1:

For given l = 0, 1, . . ., M � 1 then �tk ¼ lT 1 þ tNg ¼ ðlþ 1ÞT 1 ¼ slþl with k = (l + 1)Ng. The solution

along particle trajectories computed in (3) is reconstructed on the fixed grid on X as described in Section
2.3. This gives the initial function glþ1;0

i;j for Eq. (2.3) at time sl + 1. If l + 1 < M then the computation returns

to (2), and the cycle from (2) to (4) is repeated to compute the solution to (1.1) and (1.2) for
�tk 2 ½ðlþ 1ÞT 1; ðlþ 2ÞT 1�. If l + 1 = M then k = MNg = Nt and glþ1;0

i;j ¼ gM ;0
i;j provides the approximate solu-

tion to (1.1) and (1.2) at �tNt ¼ T . The ese, ke, and FE are computed at time T based on the function gM ;0
i;j ,

and the computational cycle is ended.
3. Computational examples

3.1. Steady state solution

For the time independent Vlasov–Poisson–Fokker–Planck system one can obtain an exact solution. This

solution can be used as an initial distribution function for the time dependent problem. The resulting com-

putation serves as a check on the accuracy of the numerical method.

We consider the set of equations
v
of
ox

þ EðxÞ of
ov

¼ q
o2f
ov2

þ b
o

ov
ðvf Þ; 06 x6 1; �1 < v < 1;

EðxÞ ¼ o/
ox

;

and /(x) the solution to
o
2/
ox2

¼
Z 1

�1
f ðx; vÞdv� hðxÞ;

/ð0Þ ¼ /ð1Þ ¼ 0:
A solution is
f ðx; vÞ ¼ exp cosð2pxÞ � bv2

2q

� �
; EðxÞ ¼ � q

b
ð2pÞ sinð2pxÞ;

hðxÞ ¼ q
b
ð2pÞ2 cosð2pxÞ þ

ffiffiffiffiffiffiffiffi
2qp
b

s
expðcosð2pxÞÞ:

ð3:1Þ
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The solution to the time dependent problem (1.1) and (1.2) is therefore computed by the method of Sec-

tion 2 with initial function
f0ðx; vÞ ¼ exp cosð2pxÞ � bv2

2q

� �

and the background charge distribution h(x) given by (3.1).

Our goal is to estimate computationally the order of accuracy of the numerical method of Section 2. As a

representative quantity for the solution we graph the electrostatic energy as a function of time which is gi-

ven by expression (2.34). The discretized electrostatic energy, eseð�tkÞ, is computed according to (2.39). Fig. 1

gives the graph of eseð�tkÞ for 06�tk 6 2. Here b = 0.1, q = 0.1, Nx · Nv = 100 · 100, Dt = 0.0001 and

Ng = 4000. Eq. (1.21) is approximated using the SOR method iterated to a tolerance of 10�11 as mentioned

in Section 2.2.2. As expected for the steady state problem the graph is close to constant except, however, at
points of regriding where discontinuities are apparent. The parameter, c, of (2.2) determines the range of

discrete velocities used in the computation. This parameter can be adjusted to improve the quality of the

computed solution. In the present computation we let c = 2. In subsequent computations this constant is

a given different value.

Our first step is to see what effect the time parameter, Dt, has on the computation. Keeping the other

parameters the same as for Fig. 1 the parameter Dt is varied as Dt = 0.01, 0.001, 0.0001. Fig. 2 shows

the graph of ke for these values of Dt. It can be noted that the ke graphs computed from expression

(2.37) are continuous at the regriding points. The dotted line shows the ‘‘exact’’ value of ke which was ob-
tained by approximating the integral (2.35) using the function, f(x,v), of (3.1) and Nx · Nv=

300 · 300 = 90,000 data points. We observe that the error in the computed solution for t > 0 decreases
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markedly with Dt and that the most accurate solution over the time interval [0,2] is with Dt = 0.0001, i.e.,

Dt = O((Dx0)
2 + (Du)2).

We make a further determination of the order of accuracy of the numerical method by computing the

error in the electric field. Let xk, k = 1, . . ., Np � 1 be the points on the Poisson mesh. Then

EðxkÞ ¼ � q
b ð2pÞ sinð2pxkÞ is the exact value of the electric field, and Ek(t) is the approximate field at the

Poisson mesh points at time t. Let
e2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNp�1

k¼1

ðEðxkÞ � EkðtÞÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNp�1

k¼1

EðxkÞ2
s ;
the relative l2 error in the electric field. Fig. 3 shows the graphs of e2(t) for Nx · Nv · Dt = 50 · 50 · 0.0004,

70 · 70 · 0.0002, 100 · 100 · 0.0001. That is we use respectively 2500, 4900, 10,000 data points so that the
number of data points is approximately doubled from one computation to the next, and the time step is

halved. Also, Dt = O((Dx0)
2 + (Du)2) for these computations. Values of e2(t) are given in Table 1 for

t = 0, 0.3, 1. We see that increasing the number of data points by a factor of two and reducing the time

step by 1/2 approximately reduces the error by 1/2. This suggests that the error is O(1/N + Dt) where N

is the number of data points. But (Dx0)
2 + (Du)2 = C/N, C a constant. Thus the computations indicate that

the method has accuracy that is O((Dx0)
2 + (Du)2 + Dt). It can be noted that it is shown computationally in

[18] that the particle-in-cell method for the Vlasov–Poisson system using a finite difference method to solve
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the Poisson equation is second order accurate in the spatial parameters assuming Np = Nx. The method in

[18] can only be O(Dt) in the time parameter. Thus the order of accuracy presently obtained for nonzero q, b
is consistent with this previous result for q = b = 0.
3.2. Time dependent solution, approach to steady state

It is known that the solution to the Vlasov–Poisson–Fokker–Planck system converges to a time inde-

pendent steady state solution as t ! 1 [3]. We demonstrate this property computationally by considering

an initial distribution function of the form
f0ðx; vÞ ¼
Kffiffiffiffiffiffi
2p

p
vth

1þ 2� cos
2px
L

� �� �
exp

�v2

2v2th

� �
; 06 x6 L; ð3:2Þ
vth, �, L, K – constants and h(x) = K in (1.3). If b = q = 0 then (1.1) and (1.2) becomes the Vlasov–Poisson

system, and the solution with initial function (3.2) and h(x) = K represents classical Landau damping. The

Landau damping phenomenon is a characteristic of collisionless plasma that results in a damping of the

plasma wave without energy dissipation through collisions with the surrounding medium. The physical

mechanism that causes this is a transfer of energy from the wave to plasma particles that are moving with

a velocity close to the phase velocity of the wave. However, if b, q 6¼ 0 then as time increases the dominant

process becomes a dissipation of field energy as a result of the diffusion in velocity space. The solution,



Table 1

Relative l2 error in the electric field

Nx · Nv · Dt e2(t), t = 0 e2(t), t = 0.3 e2(t), t = 1

50 · 50 · 0.0004 11.32 D-4 9.683 D-4 9.907 D-4

70 · 70 · 0.0002 5.772 D-4 4.945 D-4 5.289 D-4

100 · 100 · 0.0001 2.828 D-4 2.429 D-4 2.389 D-4
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f(x,v,t), of (1.1) and (1.2) approaches a steady state as t! 1. It can be determined that the steady state

solution is
f ðx; vÞ ¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffi
2pq=b

p exp
�v2

2q=b

� �
: ð3:3Þ
When q, b 6¼ 0 the approach to steady state can be observed several ways. First, we can consider the
electrostatic energy given by (2.34). At the steady state with f(x,v,t) replaced by the function (3.3) and

h(x) = K in (1.3) it follows that q(x) = 0, /(x) = 0, and E(x) = 0. Thus for the solution to (1.1) and (1.2)

with initial function (3.2) as t ! 1 then ese ! 0. Secondly, the kinetic energy is given by (2.35).

Replacing f(x,v,t) in (2.35) by the function (3.3) and evaluating the integral it follows that as

t ! 1, 2ke ! KLq/b. Finally, a useful quantity for describing the convergence to steady state is the

free energy defined by (2.36). It is shown in [3] that the free energy is a monotonically decreasing func-

tion of time that is bounded from below. Hence FE approaches a limit as t! 1. The proof in [3] is

for an initial value problem in three dimensions. However, we can show computationally the applica-
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bility of this result to the present 1-D periodic problem. For the function (3.3) the entropy integral in

(2.36) can be evaluated exactly. Along with the steady state values for �ese� and �ke� it can be deter-

mined that FE ! KLq
b lnðK=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pq=b

p
Þ as t ! 1.

To demonstrate the time asymptotic behavior we compute the solution to (1.1) and (1.2) with initial

function (3.2) for varying q and b. In (3.2) let � = 0.1, L = 4, vth = 0.3/p, K = 1/4. The thin line in Fig. 4 gives
the graph of electrostatic energy for the case q = b = 0. That is this is the solution to the Vlasov–Poisson

system with no Fokker–Planck diffusion. This computation was done with a particle-in-cell method similar

to that in [18] using 10,000 initial data points. The slow non-monotonic decrease in the amplitude of oscil-

lations in the graph of ese is indicative of a mild Landau damping.

To observe the convergence to steady state for q, b 6¼ 0 we now let b take on the values b = 0.01, 0.0025,

0.001, q = 0.05b and compute the solution using the method of Section 2. For these computations

Nx · Nv = 150 · 150 = 22,500 particles, Dt = 0.01. For b = 0.001 then Ng = 800. That is regriding is at time

intervals Ds = 8. For b = 0.0025, 0.01, Ng = 400. Regriding is at intervals Ds = 4. The parameter, c, of (2.2)
has the value c = 0.5. The iterative procedure (SOR) is used throughout to approximate (1.21). Since q/

b = 0.05 in each case the solutions to (1.1) and (1.2) all converge to the same steady state solution as

t! 1. The difference is in how fast the solutions converge to the limit. The solid line in Fig. 4 shows

the graph of ese for b = 0.001, q = 0.05b in comparison to the graph for q, b = 0. Fig. 5 gives the ese graphs

for b = 0.0025, 0.01. As expected ese ! 0 as t gets large with the limit approached more rapidly for the lar-

ger q, b. For q/b = 0.05 the limiting value of ke for the given parameters is 2ke ! KLq/b = 0.05. Fig. 6

shows the graphs of kinetic energy for the three cases considered. The approach to the steady state value
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is reasonably clear. Fig. 7 shows the graphs of FE as a function of time for the three cases. The graphs are

monotonically decreasing as expected based on the theory in [3] and approach a limiting greatest lower

bound. For K = 1/4, L = 4, q/b = 0.05 then limt!1FE ¼ KLq
b lnðK=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pq=b

p
Þ � �0:04036834. The graphs

of FE in Fig. 7 show a good agreement with this theoretically determined limit. For a more quantitative

measure we refer to Table 2. Here the computed FE is given at the end of the respective time intervals
for b = 0.001, 0.0025, 0.01 and q = 0.05b.

As another example the solution to (1.1) and (1.2) is computed with some different constants in (3.2). We

now let � = 0.01, L = 1, vth = 0.3/p, K = 3.5. The thin line in Fig. 8 gives the ese graph for the Vlasov–Pois-

son solution, i.e., b = q = 0. For this computation we use a particle-in-cell method. For the present set of

parameters the graph of ese has a higher frequency of oscillation than the previous example and is some-

what more difficult to resolve computationally with the particle-in-cell method. Thus for the q,b = 0 case we

use 40,000 data points. To observe the approach to steady state for b,q 6¼ 0 we let b = 0.01 and vary q as

q = 0.0001, 0.00015, 0.0002. Now the ratio q/b varies, and the time dependent solutions approach different
Table 2

Computed FE at time T, q = 0.05b

b T FE

0.001 2400 �0.04036779

0.0025 1200 �0.04036822

0.01 400 �0.04036827

Exact steady state FE � �0.04036834.
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steady state solutions. The computations are done by the method of Section 2 with Nx · Nv = 100 ·
100 = 10,000 particles, Dt = 0.01, Ng = 400. Thus regriding is at intervals Ds = 4. For the constant in

(2.2) c = 0.5. It can be noted that the method of Section 2 which includes the regriding requires fewer initial

data points for a stable computation than the particle-in-cell method which does not include regriding used

for b, q = 0. In all cases the graphs of ese approach zero; however, the convergence to the limit is more rapid
for the larger value of q. The graph of ese for b = 0.01, q = 0.0001 is in Fig. 8 in comparison to the graph for

b = q = 0. The ese graphs for b = 0.01, q = 0.00015 and b = 0.01, q = 0.0002 are in Fig. 9. The difference in

the steady state solutions is seen clearly in the graphs of the kinetic energy. For q = 0.0001, 2ke ! KLq/

b = 0.035, for q = 0.00015, 2ke ! 0.0525, and for q = 0.0002, 2ke ! 0.07. This is demonstrated clearly in

Fig. 10. The free energy graphs decrease monotonically, but in this case approach different limits. The

FE graph for b = 0.01, q = 0.0002 is shown in Fig. 11. For K = 3.5, L = 1, q/b = 0.02 then

limt!1FE ¼ KLq
b lnðK=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pq=b

p
Þ � 0:16028852. The graph of Fig. 11 is in agreement with this limiting value

of FE. By comparison to the exact steady state value of FE the computed value in Fig. 11 at T = 400 is
FE = 0.16028863.

We comment briefly on the choice of the regrid parameters, T1, Ng, where T1 = NgDt = Ds, the re-

grid interval. As tn increases on the interval [0,T1], tn = nDt, n = 0, . . ., Ng, the coefficients a(i, j,tn),

b(i, j,tn) in (2.3) increase, and the quantity H(tn), defined in Section 2.2.2, also increases. The closer

H(tn) gets to one the more iterations are required for convergence of the SOR method. Thus Ng

and T1 are chosen sufficiently small so as to limit the number of iterations required for the SOR algo-

rithm. Reducing T1 can also improve the long term stability and accuracy of the method and keep

discontinuities at the regriding step from becoming too pronounced. However, Ng and T1 are chosen
sufficiently large so that most of the computation goes into the particle cycle of Section 2.2 and not
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into the regriding step of Section 2.3. Also, the smaller q, the faster the convergence of the SOR meth-

od, and the larger one may be able to take Ng and T1. So, for example, in the computation given by

the solid line in Figs. 9 and 10, q = 0.0002, Dt = 0.01, Ng = 400, T1 = 4, at the beginning of a particle

cycle the SOR method converges to a tolerance of 10�11 with about 7 iterations and at the end of the

particle cycle the convergence requires about 14 iterations. For this example there is very little change

in the computed solution if instead of using Ng = 400, T1 = 4 we let Ng = 200, T1 = 2. Thus, within

limits the regrid parameters need not be specified very precisely. For the computation given by the

solid line in Figs. 4 and 6, q = 0.00005, Dt = 0.01, Ng = 800, T1 = 8, the SOR method converges to
a tolerance of 10�8 with 4–5 iterations on the entire particle cycle. We note that the tolerance for

the SOR method is 10�8 for the computations of Figs. 4–7. For all other computations it is 10�11.

We do not have a specific formula for setting the regrid parameters. For a given initial data and

parameters, q, b, some experimentation over a few computational cycles was required to determine

suitable values for T1, Ng.
4. Some other numerical methods

In this section we consider some other ways of approximating the solution to (1.1) and (1.2). This allows

us both to determine with more certainty the validity of our computations and also to point to possible
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advantages the present numerical method may have over other methods. Two methods considered are the

random particle method described in [1,9] and the finite difference method of [14].

We start with the random particle method. The method derives from the stochastic interpretation of the

convection–diffusion process which is given in terms of the Langevin equation
dx ¼ v dt; ð4:1Þ

dv ¼ ðEðx; tÞ � bvÞdt þ
ffiffiffiffiffi
2q

p
dBðtÞ: ð4:2Þ
Here B(t) represents Brownian motion. With some suitable assumptions the PDE (1.1) can be derived on

the basis of Eqs. (4.1) and (4.2) as is done in [5]. The random particle method as applied to the Vlasov–Pois-

son–Fokker–Planck system numerically approximates the solutions to (4.1) and (4.2). Our application of

this method to approximate the solution to (1.1) and (1.2) proceeds as follows: phase space is partitioned
as in Section 2.1. That is,
x0i ¼ i� 1

2

� �
Dx0; i ¼ 1; . . . ;Nx;

uj ¼ �1þ jDu; j ¼ 1; . . . ;Nv;

v0j ¼
cujffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2j

q : ð4:3Þ
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This distribution of initial data points ðx0i ; v0jÞ is referred to as uniform (in x0,u) in contrast to an asymptotic

initial distribution to be considered subsequently. The partition in the time variable is tn = nDt,
n = 0, 1, . . ., Nt, T = NtDt and tn+1/2 = tn + Dt/2. approximate trajectories are defined as x(i, j,tn), v(i, j,tn)

such that xði; j; 0Þ ¼ x0i ; vði; j; 0Þ ¼ v0j . These trajectories satisfy a numerical approximation to the stochastic

differential equations (4.1) and (4.2). The method we use is due to Chang [6], and which is also described in
[1]. Following the description in [1] if x(i, j,tn), v(i, j,tn) are given then the values at time tn+1 are computed as
ð1Þ xnþ1=2
i;j ¼ xði; j; tnÞ þ

Dt
2
vði; j; tnÞ;

vnþ1=2
i;j ¼ vði; j; tnÞ þ

Dt
2
ðEðxði; j; tnÞ; tnÞ � bvði; j; tnÞÞ;

ð4:4Þ

ð2Þ xði; j; tnþ1Þ ¼ xði; j; tnÞ þ Dtv
nþ1

2
i;j þ ðDtÞ

3
2

ffiffiffiffiffi
2q

p 1

2
/n;1 þ

ffiffiffi
3

p

6
/n;2

 !
;

vði; j; tnþ1Þ ¼ vði; j; tnÞ þ
Dt
2

Eðxnþ
1
2

i;j ; tnþ1
2
Þ � bv

nþ1
2

i;j

� �

� bðDtÞ
3
2

ffiffiffiffiffi
2q

p 1

2
/n;1 þ

ffiffiffi
3

p

6
/n;2

 !
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtð2qÞ

p
/n;1:

ð4:5Þ
Here /n,1 and /n,2 are independent normally-distributed random numbers with zero mean and unit variance

and Eðxði; j; tnÞ; tnÞ is the approximate electric field.

To derive the self consistent field for the solution of (1.1) and (1.2) one associates with each trajectory a
charge
qi;j ¼
cf 0ðx0i ; v0iÞDuDx0

kð1� u2j Þ
3=2

; ð4:6Þ
where
k ¼
X
i;j

f0ðx0i ; v0iÞ
c

ð1� u2j Þ
3=2

DuDx0

 !
�
X
k

hðxkÞ
 !,

:

The constant k is computed in Section 2.2.1 and is needed to insure total charge neutrality. At time tn the

solution to (1.1) has an approximation of the form
�f ðx; v; tnÞ ¼
X
i;j

qi;jdðx� xði; j; tnÞÞdðv� vði; j; tnÞÞ
and the discrete charge density is given as
~qðx; tnÞ ¼
X
i;j

qi;jdðx� xði; j; tnÞÞ � hðxÞ:
From the function ~qðx; tnÞ one computes the approximate field Eðx; tnÞ exactly as in Section 2.2.6. At the
half step, time tn+1/2, the field E is computed on the basis of a ~qðx; tÞ in which x(i, j,tn) is replaced with xnþ1=2

i;j .

The random particle method is used to compute the solution to (1.1) and (1.2) for which the initial data,

f0(x,v), is given by (3.2). The background charge in (1.3) is given by h(x) = K as in Section 3.2. In (3.2) the

various parameters are � = 0.1, L = 4, vth = 0.3/p, K = 1/4. In (1.1), (4.4) and (4.5) we let b = 0.001,

q = 0.05b. The constant in (4.3) is c = 0.5. We have previously computed the solution to (1.1) and (1.2) with

this initial data and parameters q, b by the method of Section 2. We will refer to the method of Section 2 as

the deterministic particle (DP) method. The ese graph computed by the deterministic particle method is gi-
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ven by the solid line in Fig. 4 and the ke graph is shown by the solid line in Fig. 6. We compute these same

quantities using the random particle method. The ese is computed from the approximate field, E, at the
particle positions the same way as in Section 2.4. The ke is computed from the approximate trajectories

given by (4.4) and (4.5) and the charge, qi,j, (4.6), as
ke ¼ 1

2

X
i;j

ðvði; j; tnÞÞ2qi;j:
Fig. 12 gives the graph of ke and Fig. 13 the graph of ese for the random particle method in which particle

trajectories are computed by (4.4) and (4.5). Here Nx · Nv = 200 · 400 = 80,000 particles and Dt = 0.01. For

the Poisson mesh the parameter is Np = 200. Increasing the number of discrete velocities improves the qual-

ity of the computed solution which is the reason for using more points in velocity space than in position
space. The dotted line in Fig. 12 and the thin line in Fig. 13 represent the solution computed by the method

of Section 2 (the DP method), that is the dotted line in Fig. 12 is the same graph as the solid line in Fig. 6

and the thin line in Fig. 13 is the same graph as the solid line in Fig. 4. These graphs demonstrate a very

good agreement between the random particle method based on (4.3)–(4.5) and the method of Section 2.

A second example is now considered with a different set of parameters for f0(x,v) given by (3.2). We let

� = 0.01, L = 1, vth = 0.3/p, K = 3.5. The parameters b, q are b = 0.01, q = 0.0002. This example was previ-

ously computed by the deterministic particle method. The ese graph is the solid line in Fig. 9 and the ke

graph is the solid line in Fig. 10. The random particle method based on (4.3)–(4.5) is therefore applied
to compute the solution to (1.1) and (1.2) for this second set of parameters. As in the previous example
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Nx · Nv = 200 · 400 = 80,000 particles, Dt = 0.01, Np = 200. The solid line in Fig. 14 shows the graph of ke

and the dashed line in Fig. 15 the graph of ese in comparison to the quantities previously computed by the

deterministic particle method (the dotted line in Fig. 14 and the solid line in Fig. 15.) The ke graphs dem-

onstrate a reasonably good correspondence between the two methods; however, from Fig. 15 it is seen that

the ese graph is not well resolved by the random particle method. It can be noted that the electrostatic en-
ergy is a smaller quantity and has a more rapid oscillation for the present example than for the previous

example. This may account for the increased difficulty in computing it accurately.

A question one might ask is whether the results obtained with the random particle method, in particular

the ese graph in Fig. 15, can be improved with a different way of distributing the initial data points. To

address this question we compute the solution to (1.1) and (1.2) using the random particle method with ini-

tial data asymptotically distributed according to a low discrepancy sequence of points. Initial distributions

of this type have been used in applying particle methods to solve the Vlasov–Poisson system and are known

to have good accuracy and stability properties. We use the low discrepancy sequence based on Fibonacci
numbers applied by Neunzert and Wick in [12].

To compute with asymptotically distributed points we follow the procedure described in [19] where some

similar computations are done for the Vlasov–Poisson system. For the initial distribution function for (1.1)

and (1.2) let f0(x,v) = h(v)g(x) where
gðxÞ ¼ 1þ 2�cos
2px
L

� �
; 06 x6 L ð4:7Þ
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and
hðvÞ ¼
K

C
ffiffiffiffi
2p

p
vth
e�v2=ð2v2

th
Þ; vmin 6 v6 vmax;

0; v < vmin or v > vmax:

(
ð4:8Þ
Here
C ¼ 1ffiffiffiffiffiffi
2p

p
vth

Z vmax

vmin

e
� v2

2v2
th dv:
Thus
 Z 1

0

Z 1

�1
f0ðx; vÞdv dx ¼ KL:
To obtain the initial particle distribution in phase space we start with a sequence of points in the unit

square as follows: let ak be the kth Fibonacci number, i.e., a0 = a1 = 1 and ak+1 = ak + ak� 1, and let

N = ak. Then let
e1;i ¼
2i� 1

2ak
;

e2;i ¼
2ði� 1Þak�1 þ 1

2ak

� 

; i ¼ 1; . . . ;N ;

ð4:9Þ
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where {x} refers to the fractional part of x. The points (e1,i,e2,i) comprise a low discrepancy sequence of N

points in the unit square. The coordinates of the initial data points in phase space are ðx0i ; v0iÞ; i ¼ 1; . . . ;N
which are obtained as solutions to the equations
e1;i ¼
1

L

Z x0i

0

gðxÞdx; e2;i ¼
1

K

Z v0i

vmin

hðvÞdv:
Applying now the Chang method to approximate the stochastic differential equations (4.1) and (4.2) we

let xði; 0Þ ¼ x0i ; vði; 0Þ ¼ v0i ; i ¼ 1; . . . ;N . Then for n = 0, 1, . . ., Nt given (x(i,tn),v(i,tn)) the quantities

(x(i,tn+1),v(i,tn+1)) are computed by expressions (4.4) and (4.5) in which the indices (i, j), i = 1, . . ., Nx,

j = 1, . . ., Nv are replaced by the single index i = 1, . . ., N. Along each trajectory the charge qi,j given by

(4.6) is replaced by qi = KL/N. Thus the charge along each trajectory is a constant, and the total charge

is
PN

i¼1qi ¼ KL:
To compute the approximate electric field in (4.4) and (4.5) a discrete charge density is now defined as
~qðx; tnÞ ¼
XN
i¼1

qidðx� xði; tnÞÞ � hðxÞ ¼
XN
i¼1

KL
N

dðx� xði; tnÞÞ � hðxÞ:
With ~qðx; tnÞ so defined, and similarly at time tn+1/2, the approximate field Eðx; tnÞ; Eðx; tnþ1=2Þ is computed

as in Section 2.2.6.

The random particle method with initial points asymptotically distributed is applied to compute the

solution to (1.1) and (1.2) of Figs. 14 and 15. Thus in (4.7) and (4.8) the parameters �, L, K, vth are as pre-
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viously given for the solution with uniformly distributed initial points. In (4.8) we let vmax = 10vth,
vmin = �l0vth. The Fibonacci number ak is taken as a24 = 75025. Thus N = 75025 initial data points are used

in the computation, Dt = 0.01, Np = 200. The thin line in Fig. 14 is the ke graph and the thin line in Fig. 15

is the ese graph computed according to the random particle method with asymptotically distributed initial

data. The quality of the solution computed with asymptotically distributed initial points is somewhat better

than the solution based on initial points uniformly distributed in the x0,u variables (shown by the solid line

in Fig. 14 and the dashed line in Fig. 15). However, the problem of resolving accurately the graph of elec-

trostatic energy still remains. We note that the random particle method with asymptotically distributed ini-

tial data was also applied to the problem of Figs. 12 and 13. A good agreement was obtained for this
example between the asymptotic method and the other methods of approximation.

We also approximated Eqs. (4.1) and (4.2) using the 1.5 strong scheme referenced in [11, p. 383] and

which is used for the numerical experiments in [15]. The random particle method with this different method

for approximating the stochastic differential equations was applied to the two examples of Figs. 12–15.

Here the initial data was given the uniform distribution in the x0,u variables. The results were very similar

to those we get with the Chang method. Thus we did not get an accurate representation for the ese graph of

Fig. 15 using the random particle method. The graphs in Figs. 13 and 15 make it appear that the random

particle method approximates the solution to (1.1) and (1.2) of Fig. 13 more accurately than the solution of
Fig. 15. However, this is not necessarily the case. If one graphs the ese curve of Fig. 13 for small values on a

fine scale what is observed is that the random particle method does not resolve accurately the electrostatic

energy for values smaller than approximately 10�5, and this is similarly the case for the graph of
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electrostatic energy of Fig. 15. What is also observed is that the deterministic particle method obtains a

good resolution of the ese graph with well defined oscillations to very much smaller values than are resolved

by the random particle method.
We now consider the finite difference method of [14]. Let Eq. (1.1) be written as
of
ot

þ v
of
ox

þ Eðx; tÞ of
ov

¼ b
o

ov
ðvf Þ þ q

o
2f
ov2

: ð4:10Þ
The left side of (4.10) is the Vlasov–Poisson part and the right side is the Fokker–Planck part of the equa-

tion. In [14] the approximation to the solution to (1.1) is maintained on a fixed rectangular grid in phase

space. The Fokker–Planck part of the equation is approximated by a finite difference method on the fixed

grid. The differencing in time is done along characteristic directions associated with the Vlasov–Poisson

part of the equation. This requires that function values be interpolated from points on the grid to points

off the grid at each step of the computation. The techniques used for the differencing in time are similar
to those of Cheng and Knorr in [7]. For the detailed description of the numerical method we refer to [14].

The finite difference method is applied on a region of phase space A ¼ fðx; vÞ=06 x6 1;�W 6 v6W g
for a positive number W. Let Mx, Mv, Mt be positive integers, Dx = 1/Mx, Dv = W/Mv. Then the region

A is partitioned as xi = iDx, i = 0, 1, . . ., Mx and vj = jDv, j = �Mv, . . .,Mv. The time interval [0,T] is par-

titioned as tn = nDt, n = 0,1, . . .,Mt, T = MtDt. If f(x,v,t) is the solution to (1.1) and (1.2) then the approx-

imation to f(xi,vj,tn) is denoted f n
i;j. The electric field is computed at a half step in time, tn+1/2 = tn + Dt/2, at
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grid points xi, i = 0, 1, . . ., Mx and is denoted Enþ1=2
i . Given the initial function to (1.1), f0(x,v), at time tn = 0

then f 0
i;j ¼ f0ðxi; vjÞ; i ¼ 0; 1; . . . ;Mx; j ¼ �Mv; . . . ;Mv. The subsequent values f n

i;j; Enþ1=2
i ; n > 0 are com-

puted by the method of [14]. To compare the method with that of Section 2 we compute the ese, ke, and FE.

The ese is computed as
eseðtnÞ ¼
1

2

XMx�1

i¼0

Enþ1=2
i þ Enþ1=2

iþ1

2

 !2

Dx:
There is a small discrepancy here in that our value for ese at time tn is based on field values computed at the

half step. However, we determine that this discrepancy has a negligible effect. The ke and entropy, ent, are

computed as
keðtnÞ ¼
1

2

XMx�1

i¼0

XMv

j¼�Mv

ðvjÞ2f n
i;jDxDv;

entðtnÞ ¼ �
XMx�1

i¼0

XMv

j¼�Mv

f n
i;j lnðf n

i;jÞDxDv:
and FE = ese(tn) + ke(tn) � q/b ent(tn).
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The finite difference method of [14] is applied to the example that was computed by the random particle

method for Figs. 14 and 15. 1 That is, the initial data, f0(x,v), is given by (3.2) with parameters � = 0.01,

L = 1, vth = 0.3/p, K = 3.5, the background charge is h(x) = K, the parameters b, q are b = 0.01,

q = 0.0002. Figs. 16–18 show the graphs of ese, ke, and FE computed by the finite difference method.
The grid parameters for these computations are W = 4, Mx,Mv = 150,150, Dt = 0.04. The total number

of data points on the grid is Mx · (2Mv + 1) = 45,150. The other graphs in Figs. 16–18 are computed by

the deterministic particle method. These graphs were previously shown in Figs. 9 and 10 for which the grid

parameters are Nx · Nv = 100 · 100 = 10,000 particles, Dt = 0.01. The correspondence between the two

methods seems quite good particularly in the graphs of ke and FE. As the steady state value of the kinetic

energy is 2ke = 0.07 then as seen in Fig. 17 this limit is being approached somewhat more precisely by the

deterministic particle computation. There is some discrepancy between the two methods in the graph of ese.

The electrostatic energy is a relatively small quantity and is the most sensitive to changes in the computa-
tional method. The different ways of distributing the initial data points may account for the difference in the

two ese graphs.

In drawing some comparison between the finite difference method and that of Section 2 it appears that

the method of Section 2 has a higher order of accuracy. This can primarily be due to the fact that with the

method of Section 2 the parameter Dt can be refined independently of Dx0 and Du to reduce the error. We

conjecture based on the computations of Section 3.1 that the error for the method is of the form

O((Dx0)
2 + (Du)2 + Dt). For the finite difference method the parameter Dt cannot be taken independently

of Dx and Dv. A bound on the error for the time interval [0,T] given in [14] is of the form
1 The computer program for doing these calculations was provided to us by the author of [14].
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KðW Þ Dt þ ðDxÞ2 þ ðDvÞ2

Dt
þ e�CW 2

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dt

Dv

r" #
: ð4:11Þ
Here W is the upper bound on velocity in region A;KðW Þ, a certain function of W, and C a constant.

According to this estimate for a given Dx, Dv, and W there is an optimal Dt that gives the minimal error.

No claim is made in [14] that the bound (4.11) is optimal, and we do not attempt to verify the estimate

computationally. However, our computations do indicate that an expression of the type (4.11) can be rep-

resentative of the error for the finite difference method. For Dx, Dv, and W fixed as Dt is decreased the error

will initially decrease to a certain point and then as Dt is further decreased the error of the method increases.

It therefore becomes necessary to choose Dt close to the optimal value to minimize the error. Based on the
estimate (4.11) and some experimentation we expect that Dt should be chosen such that

Dt ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDvÞ2

q
, K a constant. However, there is uncertainty as to how to choose K, and changes

in this parameter can have a notable effect on the computed solution.

To demonstrate the effect that varying Dt can have on the finite difference method we consider the free

energy graphs of Fig. 18 and observe the approach to steady state on a fine scale. Fig. 19 gives the free

energy graphs for the finite difference method with W = 4, Mx,Mv = 150,150 (45,150 data points) and

Dt = 0.05, 0.04, 0.03, 0.02. As the steady state free energy is a lower bound for the free energy it is apparent
that there is a loss of accuracy in the graphs for Dt = 0.03, 0.02. Here the graphs go below the steady state

value with the loss of accuracy more pronounced in the graph for Dt = 0.02. The optimal Dt for this

computation seems to be around Dt = 0.04, 0.05, and the graphs for these Dt values give a more accurate
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representation for the approach to the limit. Fig. 20 shows the approach to steady state given in Fig. 19 for

which the scale is further refined. Included in Fig. 20 is the FE graph computed by the deterministic particle
method for which Nx · Nv = 100 · 100, Dt = 0.01 (shown in Fig. 18). Also included for a point of reference

is the FE graph computed with the deterministic particle (DP) method with Nx · Nv = 50 · 50, Dt = 0.04,

Ng = 100. The jump discontinuities apparent in the DP graphs on this scale are due to the regriding.

The regriding preserves kinetic energy but not entropy, so the ke graph is smooth but the entropy has dis-

continuities at the regriding points. For the solution computed by the DP method and Nx · Nv = 100 · 100

the convergence in the time parameter is largely complete with Dt = 0.01 and further reducing Dt makes an

insignificant change in the solution. The exact steady state value of the free energy is FE = 0.16028852, and

the solution computed with the deterministic particle method, Nx · Nv = 100 · 100, Dt = 0.01, is converging
at T = 400 to the value FE = 0.16028863 (taken at the end of the particle cycle before regriding). This com-

putation based on the deterministic particle method is giving a somewhat more precise answer for the lim-

iting value of FE than is being obtained by the finite difference method.

To further study the convergence of the finite difference method we consider the solution obtained with

Mx · (2Mv + 1) = 150 · 301 data points, W = 4, Dt = 0.04, refine the grid, and observe the effect on the

graph of kinetic energy. Fig. 21 shows the approach to steady state in the graph of kinetic energy on a fine

scale. The three graphs for the finite difference method are for grid parameters W = 4,

Mx · (2Mv + 1) = 150 · 301, 200 · 401, 300 · 601, with Dt = 0.04, 0.03, 0.02, respectively. Thus in reducing
Dx, Dv, and Dt the ratios Dx/Dv and Dx/Dt are constant. Also included in Fig. 21 are the KE graphs for the

deterministic particle method with c = 0.5, Nx · Nv = 100 · 100, Dt = 0.01 and c = 0.5, Nx · Nv = 50 · 50,

Dt = 0.04. It is evident that the computed solutions with the finite difference method approach more pre-
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cisely the steady state value for the kinetic energy as the grid is refined. However, the approach to the steady

state KE computed with the deterministic particle method is still more accurate and is obtained with sig-

nificantly fewer data points.

Based on the present computations as well as others we have done we conclude that one can obtain good
results with the finite difference method. It is, however, necessary to make a correct choice of Dt in order to

get the best accuracy, and there is some uncertainty as to how to choose an optimal Dt. With the method of

Section 2 there can be less uncertainty as to how to choose the parameters. For a given Dx0 and Du we de-

crease Dt until there is negligible change in the computed solution. Usually the regrid parameter, Ng, is set

so that regriding is done at the same points in time for the different Dt. Refining Dt then gives the most

accurate solution for a given Dx0 and Du. In addition, the computations indicate that the method of Section

2 has a higher order of accuracy than the finite difference method. The finite difference method is a simpler

numerical procedure and for a given number of data points computationally significantly faster. However,
as the method demonstrates lower accuracy one may obtain a comparably accurate solution with less com-

puting resources using the method of Section 2. For example, we consider the solution to (1.1) and (1.2) of

Figs. 16–18. The computation with the finite difference method uses 150 · 301=45,150 data points and

Dt = 0.04. With the deterministic particle method a solution to this problem of comparable accuracy is

computed with 50 · 50=2500 data points and Dt = 0.04, Ng = 100. The FE and ke graphs for this compu-

tation are shown on a fine scale in Figs. 20 and 21. With these parameters computed to T = 500 the DP

method required about 0.54 times the computer memory and about 0.46 times the running time as the com-

putation with the finite difference method. The computations were done on a Pentium based Linux
workstation.
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5. Conclusion

The numerical method presented is a deterministic type of particle method combined with a process for

periodically reconstructing the distribution function on a fixed grid. The computations indicate that the
numerical procedure is convergent and accurate over an extended time interval. By a transformation of var-

iables based on characteristic equations associated with the transport part of (1.1), Eq. (1.1) is put into a

form so that numerical methods for parabolic type partial differential equations can be applied. A direct

method, Douglas–Rachford, and an iterative procedure, SOR, are outlined for solving the transformed

Eq. (1.21) as a part of the particle method cycle of the computation. For small values of the diffusion

parameter SOR is the more efficient method of approximation. This is because with small q in (1.1) the iter-

ative procedure is rapidly convergent requiring relatively few iterations. Thus the PDE (1.21) is solved

rather quickly at each step of the particle computation. The regriding of the approximate distribution func-
tion is introduced so as to limit the time interval on which the particle method is applied. This greatly en-

hances the long term stability of the numerical method. In comparison with some other methods of

approximating (1.1) and (1.2) we find that the present method gives a higher degree of accuracy in the com-

puted solution and with relatively fewer data points for the initial distribution function.
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