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Abstract

A numerical method is developed for approximating the Vlasov—Poisson-Fokker—Planck system in one dimension.
This system of equations is a mathematical model for an electrostatic plasma in which collisions between the electron
distribution and a surrounding medium are taken into account. The numerical procedure combines a deterministic par-
ticle type computation with a process for periodically reconstructing the distribution function on a fixed grid. The
method is tested on some computational examples and shown to be stable and accurate on an extended interval of time.
Some comparisons are also made with other methods of approximation for the Vlasov—Poisson-Fokker—Planck system.
© 2004 Elsevier Inc. All rights reserved.
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1. The system of equations

The Vlasov—Poisson-Fokker—Planck system in one dimension with periodic boundary conditions is gi-
ven as follows: for the region of phase space 4 = {(x,0)/0 < x < L, —oco <v < —o0} and ¢ € [0,7] then
fix,v,1) is the phase space distribution function defined on 4 x [0,7] which satisfies the system of equations

of | of of of _
6t+vax+(E(x’t) pv) % Bf 952 =0, (1.1)

f(x7 v, 0) = ﬁ)(xv U),
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where
_ 9
E(x, t) = a
and ¢(x,?) is the solution to
62
a—x(f:p(xvt)a (12)
$(0,1) = ¢(L,1) =0,
with
o) = [ txvdo— ). (13)

The function /A(x) represents a fixed background charge. In addition it is assumed that

fO(Oa U) :fO(L’ U)

and
/OL /Zfo(x,v)dvdx: /OLh(x)dx, (1.4)

the latter being a condition for total charge neutrality. This system of equations describes the time evolution
of an electrostatic plasma. In this plasma model collisions between the elements of the electron distribution,
fix,v,t), and a surrounding medium are taken into account through the inclusion of the terms involving ¢
and f.

We can assume the existence and uniqueness of a solution to (1.1) and (1.2) of class C*(4 x[0,7]) and
which can be extended periodically to each strip n. < x < (n+ 1)L, —co<v<o0, 0 < ¢t < T. A proof
of global existence and uniqueness of the solution to the Vlasov—Poisson-Fokker—Planck system in one
dimension is contained in [17]. If fy(x,v) = O then it can be shown that f{x,v,¢) > 0 for 7 > 0 and if

[ [

is finite then
L 00 L 0
/ / fx,v,t)dvdx = / / So(x,v)dv dx. (1.5)
0 —00 0 —00
Given (1.4) then
L
/ px,0)dx =0, ¢=0.
0
Also, the boundary condition for ¢ implies that
L
/ E(x,t)dx =0, ¢=0.
0

In terms of the Green’s function for the boundary value problem (1.2) then

E(x,f) = /O K(x,%)p(%, £)d5



604 S. Wollman, E. Ozizmir | Journal of Computational Physics 202 (2005) 602—644

and

B x/L, 0<Xx<x,
K %) = -1, x<x<L.
L ? \

Thus

E(x7t):/ xx(/ fdo—h( ) //Kxx (x,v,8)dv dx — / (x,X)h(x)dx. (1.6)

One way of numerically approximating solutions to (1.1) and (1.2) is the random particle method. An
analysis of the method is in [9], and a computational study of this method is carried out in [1]. Some com-
putational work on the random particle method is also done in [15]. Papers have also been written on deter-
ministic methods for numerically solving the system [10,13-15]. The approach taken in these papers is to
approximate the solution to (1.1) and (1.2) by computing the solution along characteristic curves associated
with the first order transport part of (1.1). In the present paper, we consider another way of doing this. A
type of deterministic particle method is formulated based on characteristic trajectories. However, over a
relatively long time interval the particle method alone develops numerical instabilities. Thus, limits are
set on the length of time for which the particle computation is applied, and at the end of this time interval
the approximate distribution function is reconstructed on a fixed grid. With the reconstructed solution serv-
ing as a new set of initial data the particle method is restarted and continued for another time interval.
Combining the particle type computation along characteristic trajectories with the periodic regriding of
the distribution function leads to a numerical method that is stable and accurate on an extended interval
of time. Aspects of this paper were presented in preliminary form in [20].

To put this system into a different form for approximation we start with a somewhat simpler linear initial
value problem in all of phase space in which E(x,?) is a known function.

2
%+ af+(( f) = ﬁv)—f—ﬁf— a—f =0, (1.7)
f(x,0,0) = fo(x,v), —o0<x<o0, —00<V< 0.

The characteristic system associated with the equation

of af f

Loy Emwn - (1)
is

dx

priail x(0) = xo, (1.9)

dv

a:E(x(t),t)—ﬁv, v(0) = vy. (1.10)
The solution to (1.9) and (1.10) is

x(t) Z)C(X(),U(),l), U(t) = U(Xo,l)o,t),
continuously differentiate functions of x,, vy and ¢. For each ¢ the transformation of R, given by

(x0,v0) — (x(x0,v0,1),v(x0,0,1)) (1.11)

has nonzero Jacobian and is therefore invertible. Let the functions

X0 :x0(x7 v, t)v Vo :Uo(x,l],t) (112)
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define the inverse transformation (x,v) — (xo(x,v,1), vo(x,v,1)). Following an approach taken by Chandrase-
kharin[5], Eq. (1.7)is written in terms of the variables x,, vy and ¢ with x,, vy given by the functions (1.12). Using
the fact that the functions (1.12) are independent integrals of (1. 9) and (1.10), in terms of xy, vy, ¢, Eq. (1.7) is

axo\ 0 f o\ [0y O vy 2% xo Of  Qwo of
—pf - 2 — =0. 1.13
Z q[(m) w2 <6v><60>6x061)0+ %) 32 T2 axe | O Ove (1.13)
If f(xo,v0,1) 1s the solution to (1.13) then let
f(X(),U(),t) = eﬁtg(xmv()vt)'
Then
@f_ ﬁ;ag bt
a © af+ﬁeg
and substituting into (1.13) the equation for g(xo,vo,?) is
og xg 262g xo\ [vy\ Og avo ng ’xy 0g  d’vy Og
9% _ (o) 98 5 (%X (% bl ) Y 1.14
o q[(@v) 2 T\ )\ & ) aon  \&) 32 o2 ax T 02 o (1.14)

We Want to write (1.14) with coefficients in terms of xg, vo, . The Jacobian of the transformation (1.11) is
= |Q| where

Ox  Ox

Q _ axg al'o
I -

axo al/'o

Following the methods of [§8] we determine that
ox 1 Ox vy 1 Ox

XO LO

W jod w10
Pxg 1 [v ox vy 1 [ox v
. (=P ——P R Ny
a2 |of (61)0 ' u 2)’ a2 |of <6x0 2 g 1)’
where
O’x [ ox Px [ox) [ ox O’x [ Ox
P, = 2 —— (=) (=) - 1.15
=T (61)0) T2 5% v (61)0) <ax0> o2 (ax0> (115)
v [ ox\? v [ox\[/ox\ 0% [ox
Py=— = 22— (=) (=) - 1.16
2= o2 <6vo> + 2 5% o <6v0> <6x0) o2 <6x0) (1.16)
We compute the determinant of Q
ox Ov
Ox; ox
10| = 0" |—’ SN N
abo dvg
d [ ox ov Ox d [ ov
do] <T<6*) o | | ?<?)
dl o Ox v ox ov
$(&) 2| & 4(2)
o B & o gow
| v xg 0xp  Ox Oxp xg
T | ow @‘—’_ o a_Ei_lg
dug  Ovg vy x Ovg g
o Ov
Ox; O
dvy 6Lo
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Also
Oxg  dup
Wl o
axg x| _
CONE —HO 1}—1.
Thus
dlo
W_ pol. 1010 =
SO
0] =e". (1.17)

Eq. (1.14) is therefore written as

d o’ i o’ d 3
a—é;:q (a(xovvoyf))zﬁg—2a(xoyvo,t)b(xoyvo,f)W§%+(b(xowo,t))zig—}—C(Xowo,t)a—)i—i-d(xoyﬂo,t)a—li ;
(1.18)

g(x0, 0, 0) = fo(xo, vo),

Ox Ox
a(x07 Vo, t) = eﬁt avo (.X(), Vo, t)7 b(x()a Vo, t) = eﬁt aX() (an Vo, t)a

ov Ox ox ov
C(x()a Vo, ) c (aU() 1 aU() 2) 5 ('an Vo, ) e <aX0 2 — axO 1> )
where P, P, are given by (1.15) and (1.16) and x(x¢,vo,?), v(xg,00,t) 1s the solution to (1.9) and (1.10). In
terms of the solution to (1.18) and the inverse functions (1.12) the solution to (1.7) is written

f(x,0,0) = ePg(xo(x, v, 1), v0(x, v, 1), 1). (1.19)

For the periodic problem (1.1) and (1.2) some modifications are made in the formulation given so far. In
(1.18) it is now assumed that 0 < x¢ < L, and we include the boundary condition g(0,vo,7) = g(L,vo,t). The
boundary condition in vy is lim, . g (xo, vo, ) = 0. The first order equation (1.8) is defined for 4 = {(x,v)/
0 < x <L, —o0<v<oo}. The transformation (1.11) and the inverse (1.12) are regarded as transforma-
tions of 4 onto A.

Referring now to the nonlinear problem (1.1) and (1.2) the field E(x,?) is given by (1.6). By a change of
variable in the integral based on (1.11) and noting that f{x,v,7) has an expression of the form (1.19)

//Kxx (%, v,0)dv dx = //Kxxyo,wo,))eg(yo,wo,) O®y)

a( Jos WO)

= / / K(x7x(y0aW07t))eﬁlg(yO?W0at)eiﬁt dWO dyO
0 —00

dy, dwy

L 0
— [ ] &G0 w0t 0
0 —00
Thus in terms of the solution to (1.18) with periodic boundary conditions the field E(x,7) is expressed as
L 0 L
E(x,t) = / / K(x,X(yg, wo, 1))g(vg, wo, t)dwp dy, —/ K(x,x)h(x)dx. (1.20)
0 —00 0

In order to more efficiently solve (1.18) for —oo < vg < oo we make a further transformation of independ-
ent variable [4, p. 708]. Let
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cu
vo \/ﬁ’ —l<u<l, —o0 <)< o0,
—u
og 1 23/26g
2 - bl
dv, c( ) ou’
o’g s ,30°g , b0 0 (1= 0 [(1—u?)*? og

Under this transformation the boundary condition of (1.18) for |vg| — oo becomes g =0 at u = *1.
In terms of the variables xq, u, t, 0 < xo < L, —1 <u <1, vy(u) = cu/V1 —u?, we solve the set of
equations

dg 2 0°g (1-u?)*? &g
° — _° b {)—~2
- Q[(G(XOWO(”)J)) i~ 20000, 0(0). )b, (), )5
(1= 0 (1-u)" 0g g (1-w)" o
+(b(X0,Uo(u),l)) - u - au—l-C(XO,Uo(u),t) ax0+d(XQ,Uo(u),l) - ul’
(1.21)
cu
g(XOauaO):f()(an\/T—uz)a g(O,u,t)Zg(L,u,t), g(XO,—l,t):g(XO,l,t)ZO,
Ox Ox
a(xo,vo(u),t) = eﬂ‘a—vo7 b(xg,vo(u), 1) = eﬂ”‘a—xo, (1.22)
ov Ox Ox ov
= —P —— = =P, ——P 1.2
c(xo,v0,1) =€ (@vo P 600P2>’ d(xo,v9,1) = ¢ <6x0 2 3 1>, (1.23)
where x(xo,v0(u),1), v(xg,00(11),t) are the solutions to
%: v, x(0) = xo, (1.24)
dv
EZE(X(Xo,UQ(u),t),t)—ﬁU, (125)
cu
v(0) = vo(u) =

and where Py, P, are given by (1.15) and (1.16) now regarded as functions of x, u, t.
The integral for the electric field given by (1.20) is transformed as

L o]
/ / K(x(xo, 16, ), (v, wo, £))2(, o, £)dwo dy,
0 —00

:/0 /1K(x(x(),vo(u),t),x(yo,wo(a)’t))g(yma’t)‘a(yo,vvo) ai dy,

a(y()?u)

:/0 /_1K(X(xo’UO(u)’t)’x(yo’wo(u)’t))g(yo’””)(l_i;z)mdudyo,

since the Jacobian for the change of variable (yo,wo) to (y,, %) is
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Do) (-

Thus in terms of the solution to (1.21) the function E(x,?) in (1.25) is written

%0, w0) ‘ (1.26)

Blatn .00 = [ [ K (008000, 00 00, D)8 00 00) 5 iy

—/0 K (x(xo, vo(u),#),X)h(x)dx.

Ifvg = \/1637 then u = u(vy) = :2"+ =. The solution to (1.1) is written in terms of the solution to (1.21) and
the inverse transformation (1.12) aos
f(x,0,t) = ePg(xo(x,0,1), u(ve(x,v,1)), ). (1.27)

The functions a(xg,vo(u),t), b(xg,vo(11),t) can be obtained by differentiating (1.24) and (1.25) and solving
the equations

%(%) zz—f(x(xo,uo(u),m) (%) - B(%) %(0) =1 (1.29)
and
i(;;)) :Z—f(x(xo,vo(u),t),t) (aa;;) - ﬁ@f{)) %(0) =0. (1.31)

Then a(xo,v0(u),1), b(xo,00(u),2) are given by (1.22). By (1.2) % (x(xo, vo(u), 1), 1) = p(x(x0, vo(u), 1), 1).
For the coefficients c(xq,vo(u),1), d(xo,v0(1),?) it is, in addition, necessary to solve equations for the second
partial derivatives

d( 0*x > o*v 0*x 0) =0, (1.32)

dr\oxy ovy) ~ oxy 0’ oxg o

2 2 2 2 s r 2
df o ) OB Ox ) g Ov ) OE[O O 00 gy (1.33)
dr \ 0x3 v Ox \Oxj) Ov}y Oxj) Ov}y ox2 \Oxp/ \Oup Ox}, Ovj)

s,r=0,1,2, s+r=2.

Then c¢(xg,v0(1),1), d(xg,00(1),t) are given by (1.23).

The solution to (1.1) and (1.2) can be given in terms of a sequence of solutions to (1.21). We proceed as
follows: for the time interval [0,7] let 7} be such that 7/T; = M an integer. The interval [0,7] is divided into
subintervals [[/T,(I+ 1)T1], [=0,1, ..., M — 1. The relationship between g(xo,u,f) as a solution to (1.21)
and f{x,v,r) as a solution to (1.1) is given by (1.27). We let the time variable be 7 so that f(x, v, 7) is the solution
to (1.1) with initial function fo(x,v) and 7 € [0, T]. On the time interval IT; <7< (I + 1)T lett =7 — IT,. Then

f(x,0,7) = ePg(xo(x, 0, 1), u(ve(x,0,1)),1), t€]0,T)] (1.34)
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in which g(xo,u,t) is the solution to (1.21), combined with (1.24), (1.25), (1.28)—(1.33), such that
g(xo,u,0) :f<xo, = lTl). If /=0 then f(x,0,IT}) = fo(x,v). If >0 then f(x,v,IT,) = e/T1g(xo(x,v, T),

Vi
u(vo(x,v,Ty)),Ty) such that g(xo,uf) is the solution to (1.21) for ¢e€[0,7,] with initial data

g(xo,u,0) =1 (xo, i, (I- 1)T1). The numerical method is a discretization of this procedure.

2. The discrete approximation
A method is outlined for approximating the solution to (1.1) and (1.2).
2.1. Partition of phase space and time intervals

Several domains of definition for functions have been defined. Phase space is the (x,v) domain given by
A={(x,0)/0<x<L, —00 << 0}
The (x¢,v9) domain is
Ay = {(x0,v0)/0<x9 <L, —00 < vy < 00},
such that x¢ = xo(x,v,t), vo = vo(x,v,t) and (xo(x,v,?), vo(x,v,t)) the functions defined by (1.12). The (x¢,u) do-
main is
Q={(xo,u)/0<xy <L, =1 <u<l1},
such that vy = cu/V'1 — 2.
The domain Q is partitioned as follows: given integers N,, N, let Axq = L/N,, Au=2/(N, + 1). Then

1
.X()[:(l.—i)AXQ, i:1,...,Nx,

u]:—l—‘—]AI,h j:17~'-7NU'

(2.1)

Thus the region

N, N,
0<x<L, - Su< Q
{(Xoﬂl)/ X0 NU+1 u Nv+1} C

is subdivided into a uniform rectangular grid with (xo,,u;) the center of the 7,j rectangle on the grid. The
region

N, N
) /0<x <L, —l<u<——- or Co<u<1
{(xo u)/0 < xo u N1 N1 u }
is the part of @ associated with points at infinity at which the distribution function is zero.
Let
Vo, = cu;

o 1— u;
The point (xo,,%;) in Q corresponds to the point (xo,, vo,) in Ao.
Given the time interval [0,7] let T} < T be such that MT; = T for the positive integer M. For positive
integer N, let At = Ti/N,. Then t,=nAt, n=0,1,..., N, is a partition of the time interval [0,7}]. Let
u=I1T=0,1=0,1,..., M and #, = 1, + ¢, for k = [N, + n. Egs. (1.21), (1.24), (1.25), (1.28)—(1.33) are dis-
cretized on the time interval [0,77] with discrete time parameter, Az. The approximate distribution function
is reconstructed on a fixed grid at times 7;, /=0, 1, ..., M. The actual time of the discrete approximation to
(1.1) and (1.2) is given by #,k =0,1,...,N, where N, = MN,.

(2.2)
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2.2. The deterministic particle method on the time interval [0,T;]

2.2.1. The initial data

On the time interval [/T,(I+ 1)T1], [=0,1, ..., M — 1 the solution to (1.1) and (1.2) is obtained by
approximating the solution to (1.21), (1.24), (1.25), (1.28)—(1.33) in which the initial function for (1.21)
is f(xo,ﬁ, lTl) with f{x,v,f) the solution to (1.1). If /= 0 then f(xo,\/l"—f7, IT ) =/ (xo, ¢1_> The ini-
tial function fy(x,v) for (1.1) satisfies Eq. (1.4). In terms of the variables x,, # and given (1.26) then when
/= 0 the initial data for (1.21) satisfies

L
cu C
/ / XO,MO uz);/zd”dxo / /f()(xo’m)(l—w)m du dxo = /Oh(xo)dxo-

Let

g,j:ﬁ)(x()nv(),)v U()jzij i:17"'7Nx7 jzla"'vNL‘

A= (Zgu - z/zAqu())/(sZk:h(xk)).

Here x; is a point on the Poisson mesh and ¢ is the width of the grid on the Poisson mesh as described in
Section 2.2.6. If g(xg,u,t) is the solution to (1.21) corresponding to the time interval [/T,(/+ 1)T}],
[=0,1,..., M — 1 then g,’j” is the approximation to g(xo,,u;,t,), n=20,1,2,...,N,. At =0, n =0 we let
g?f =g}/ so that

gg}f) ﬁ Aulxy = € Z h(xe).
ij (1- ”j) k
For [ > 0 the initial function for (1.21) is g(xo, u,0) = f(x0, 2> - lTl), with f{x,v,t) the solution to (1.1).
In this case the discrete initial function, g, , 1s obtained by the procedure described in Section 2.3. That is
the solution obtained by the deterministic partlcle method corresponding to the time interval [(/ — 1)7,IT}]
is reconstructed on the fixed grid on Q at time /7.

and

2.2.2. The approximation of (1.21)

The approximate solution to (1 21) corresponding to the interval [/T,(/+ 1)T)] is denoted
gfj", =0,1,...,N,. For n=0 then g is obtained in Section 2.2.1. For ¢, € [0, Ty] let a(i,j,t,), b(i,j.t,),
c(i,j, ty), d(i], ,,) be approx1mat1ons to the coeflicients a(xo,, vo;, 2,), b(xo,, Vo, 1), ¢(Xo,, Vo, £n), d(Xo,, Vo, ty) 1N
(1.21). For simplicity we let gl 7 = &i; then given g7 to get g”+l we compute as follows Let

(—w)” ) (= =05 | (1= (4 0.58u)"

S/ ) 9
. c J c J C
3/2 3/2 o . .
The quantity (Hf) ! 2 ((Hf) ! %) is approximated by
o[ B —8) (8 — 8i) A= (58 = ) 5781, + 5801
aK Au J Au / (Au)*

Then gl’.’;l is obtained as a solution to the semi-implicit difference equation
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n+1 n+l n+l
g, — 28 +8-
ali,j.t,)’ < - )

g:ljl = g:‘l,j + qAt

(Axo)?
.. . gl — &1 — &iiiyn T &1
- 2 tn b ) 7tn j y g -
a(lafv ) (l J )S/< (ZAxo)(2Au)
b)) (stgiil = (s} +sDgr + %)
sy tn (Au)z
e gy 1y) B B s e — S (23)
7.]7 n 2A_x0 7.]) n ] 2AM . .
If i =1 then g”+1 g"N“j, if i = N, then g;’jl' = g’f*z‘ which is the periodic boundary condition in x,. If j = 1

then in g”“1 = () and if j = N, then gfjjl = 0 which is the zero boundary condition at u = *1.
One way to solve (2.3) for g/} ! given that g" ', 1s known is to use an iterative procedure. Let ry = Atl(Axy),
> = Atl(Au)?, p1 = Atl(2Axy), p> = At/(2Au), and let a;; = a(i,j,t,) and similarly for b;;, ¢;;, d;;. Then (2.3) is

written
(14 2qria;; + qroby (s + 5080 = qrial (81, + &14) + arabls (sigifly + 5,800 ) + F

ij?

where
n __ n 1 n n n n n n
Fi, =g, - zqv rlrZai,.ibi,.is./'(gtH,jH —8iv1j1 &ty T gi—l,j—l) + qplci,_i(gi+1,j - gi—l,j)
+ qp2di7jsj(g:j+] - gzr'l‘jfl)‘
Let D;; = 1 4 2gra?; + qryb; (s} +s9) then

qubt/
qu_]

Sn qual'y' Sn Sl
gl =@, ) (2.4)

ij Dllj i—1,j

1 gn+1 0 gn+l1
(S gl]+1 +s; gl] 1)

Given g}, that determines F7; then (2.4) can be solved 1terat1vely to obtain for g”+1 Let h0 = g; ;. Then for
k=0,1, 2

qra qrsb; 1
W = i (B + By ) +——Lsy(sthl + sV ) +—F. (2.5)
1] D 3, i+1,j i—1,j Dl"j i,j+ J - Di.j ij
The above iterative procedure referred to as the Jacobi method is convergent. In fact
1 gk 99 k-1 k-1 qr,b; k-1 0 k-1
|hzj 7hi,j ](|hl+lj hl+1]| + ‘hl 1.j hz 1]|) D. — ( ‘hlj+1 h11+1| +S |hlj 1 hz] 1|)
iJ

Letting ||| = max,,|h | and

<2qr1a 4 qryb; s (s) +s?)>

O(t,) = max

iy D;

iy

then
A — B < O©(,)||K — K.
n+l

Since 0 < ©(t,) <1 the sequence {hf‘ ;} converges uniformly in i,/ and limkﬂmhf‘ =g}
The method used to accelerate the convergence rate of the iterative procedure (2. 5) is SOR (successive
overrelaxation). Here the updated value of /;; is used in the iterative procedure as soon as it is available.
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In addition an extrapolation is carried out based on the updated /,; and its previous value. Thus for i > 1
and j > 1 instead of (2.5) we compute

2
_ qr ai‘.
hk+1 _ 1% (hf‘ar]‘j +hk+l )+

ij Di,j i—1,j

2
qr2bi.' 1 n
D Lsi(sihl sy + SR +D—,1jFi'j (2.6)

i Jij—1
ij

and

hf;“l = wizfjl + (1 — w)K

i

(2.7)

with w > 1. A precise determination of the overrelaxation parameter, w, is based on the eigenvalues, A, that
satisfy

2 2
qr,a; ; qrb;;
/ (hi+l,j + hi—lt/) + J

D;; D;; Sj(s}hiJ“ + s?hiu'—l) = Jhi;. (2.8)

For Anax the maximal eigenvalue then following the theory in [2] the optimal w is determined through the
formula

2

11— 2

We determine computationally that ©(z,) can be a good approximation to A, so for present purposes the
optimal w is computed as

oz
1+4/1-0(@,)

Wy =

Wy =

A direct method that can be used for solving (2.3) is the Douglas—Rachford method as described in [16].
Let ry = Atl(Axo)?, > = Atl(Au)?, pi = Atl(2Ax,), p» = At/(2Au), and

5)2;&1,' =gy — 28, &1 53&',] = S/S/]'gi,j+l - Sj(sjl' + S?)gz:j + st?gi,j—lv

50,xg1,j =&iv+1; — 8i-1,» 50,ug,xj = S/(gij+1 - gi,j—1)7
a;; = a(i,j,t,) and similarly for b;;, ¢;;, d;;. The difference equation is written

_ 1 i

(1- qaiﬁl@% - qbi,-rzéﬁ)g;’,,*l = (1 - 5qai,jbi,j\/rlr250,x50<u +q¢; ;P 0.« + qd[,jpz50,u>gi,j- (2.9)

Eq. (2.9) is replaced by
2 2 2 2\ =n+1 2242 2 <2 1 n
(- qa; ;" )1 — qbi‘jr25u)g[_j ={1+gq a[‘jb;‘jrlrﬂsxéu - zqai,jb[‘j\/méo‘xéo‘u + qc¢; ;P00 + qd; ;P20 &ij

(2.10)

Effectively the term qzaﬁjbi/rlrzéiéig;’f is added to the left side of (2.9) and is balanced by the term
g2a’ b’ Arlrzéiéﬁg;" . added to the right side of the equation. Eq. (2.10) is equivalent to

YR J
1
(1 - qaijrléi)g;j = (1 + qb,z/l”25ﬁ - Eqa,“jbi,j\/ r1r250,x50,u + qci_jpl(SO.x + qdi,jp250,u>g:{j7 (21 1)
(1 - gt )l = g1, — ablradig, (2.12)

Thus given g;; to get g;’jl one solves (2.11) in the index / for each j to obtain the array g;,. Then (2.12) is
solved in the index j for each i to obtain g;'.
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According to (1.5) the solution to (1.1) satisfies

/OL /Zf(x,v,t)dvdx:/Othdx

In terms of the solution to (1.21) this condition is

L
/ / X(),M I )3/2 du dX() :/ h(X())dX().
0

Thus in the discrete method we let

J= (Z ﬁgﬁIA}coALJ/(eZh(xk))

+1 In+1 n+1
and then g/ = g,j = g/7'// so that

Zgl"+l 2)3/2 Aulxg = Gzh Xi)- @13)

The purpose for the renormalization of gf/” is to maintain Eq. (2.13) at each step so as to preserve charge
neutrality in the approximation of the Poisson equation.

For relatively small ¢ the more efficient method for approximating the solution to (1.21) is the iterative
procedure (SOR) rather than the direct method. This is because decreasing ¢ decreases the value O(z,)
which governs the rate of convergence of the iterative procedure. Thus for small values of ¢ the SOR meth-
od converges to a desired degree of accuracy with relatively few iterations. For the computations of Section
3 the SOR method is used. The iteration sequence is stopped when |1 — #*~!|| < y withy =103 to 107!
depending on the computation.

2.2.3. Approximation of (1.24) and (1.25), particle trajectories

For t, € [0,T1] let (x(xo,, vo;, 2,), v(vo,, Vo, 1)), Vo, = cu,-/(, /1 —u? ) be the solution to (1.24) and (1.25) at
time 7, with initial point (xo,, vo,). The approximation to this trajectory is denoted x(i,/,1,),v(i,/, 1,). The
approximation to the electric field E(x(xo,, vo;,:),%,) is denoted E(x(i,j,t,),2,). Then at time 7, given
x(i,], t,),0(i,j, t,) and E(x(i, j, 1,),t,) to get x(i, ], t,+1),0(i,/, t,+1) we solve for 1, < t < £, 4+

dr v, x(t,) =x(i,j,t.), (2.14)
dt

dv = . ..

dt E( (l ]7tn)a tn) - ﬁva U(tn) = U(la]a tn)' (215)

Equivalently we can solve for 0 < ¢ < At

d_x =0, X(0)=x(i/,t.), (2.16)
dr

o — ‘ - .

dt E( (l J?tﬂ)a l,,) - BU, U(O) = U(lajvtn)' (217)

Then x(i, j, t,.1) = X(At), v(i,,t,.1) = 0(At). The solution to (2.16) and (2.17) is

—pAr _ aBA
U= i + (G - ) Bt .0,

(A1) = x(i, j, t,) + 5 7
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( 1— e—/JAt)
B

Therefore, to obtain particle trajectories let x(i, j,0) = xq,, v(i, j,0) = vo,. Then given x(i,j, 1,), v(i,j, 2,), and

E(x(i,J,t,),t,) quantities at time t, .+, are

B(Ar) = e (i, /1) + E(x(i,j, tn) ta).

i otnn) =x(js) + i) + (%- “‘ﬁﬂ)ﬂx(m, Wb, 2.18)
v(i, jy tar1) = € PMo(i, j 1) + wf(x(i,j, tn)sty)- (2.19)

p

2.2.4. Approximation of (1.28)—(1.31), coefficients a(i,j, t,), b(i,J t,)
Along the trajectory x(xo,, vo,, ), v(xo,, vo,, ), Vo, = cu;/ (, /1— uf), the solution to (1.28) and (1.29) is de-

noted %(xo,., v0;52), %(xo,., vo;» ). The approximations to these quantities at time #, € [0,71] are denoted
iy jota)s 32 (i Jy ta) and similarly for £5 (7, /,2,), 52 (7, j, 2.). The equations for the approximate first partial

derivatives are obtained by differentiating (2.18) and (2.19) with respect to xo, and vy. The coefficients
a(i,j,t,), b(i,j,t,) are therefore obtained as follows: at 7,=0

Ox ov Ox ov
&1 OUio) = Ox ooy Oy
o (i,7,0) =1, o (i,,0) =0, dug (i,,0) =0, S0 (i,7,0) = 1,

. ox . . . ox . .
a(l,_],O) = a_vo(la]vo)a b(l,],O) = a_xo(lvao)'

Then given values ofa%(i,j, t), 6%”(‘)(i,j, ty), aaT)‘O(i,j7 t), %(i,j7 t,) quantities at time t, 4+ are computed by

X X _ a—PAt A pA —
O i) = o it + EE 2 g4 (L)

axo axo B oxp " ] 2 o
.. o ..
X (x(d s tn) s tn) 5— (0, s ta), (2.20)
axo
.. O ov 1 —e ) OE ox
(i) o iditon) = M S ) i SR ) 5 1ot (221)
iy X o o (L—e ) oo At (1 —e )\ OE
(111) a_vo(l’]vtnﬂ) _a_vo(lvjvtn) +T G_UO(Z’J’t") + (F—T> a
X (x(i, J, ta), tn)a—x(i,j, 1), (2.22)
aU()
: dv dv (1 —e P2 BE Ox
hady — _ *ﬂAt_ .. o= PR Redy

(IV) 61)0 (17]7 tn+l) € al)() (17]7 tn) + ﬂ ox (x(l7.]7tn)7 tn) 61)0 (17]7 tn) (223)

and
. ox . . . ox . .
a(l7]atn+l) = e[;tn“ a_vo(l7]atn+l)7 b<17]atn+1) = e/h"“ a_X()(l’]’ tn+1)-

The quantity % (x,,) is defined in Section 2.2.6.
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2.2.5. The approximation of (1.32) and (1.33), coefficients c(i,j, t,), d(i,j t,)

Along the trajectory x(xo,, vo;, ), v(xo,,vo,,?), Vo, = cut;/ (, /1 —u? ) the solution to (1.32) and (1.33) is de-
noted a}fzg 7 (xo,, 00, 1), % (xo,, vo,,¢). The approximations to these quantities at time ¢ € [0,7] are denoted
& (i, 3’, U), 3 X;alo (i, ), ¢ ‘ ) "The equations for the second partial derivatives are obtained by taking second

6r‘ o
déI‘l\OIatheS of (2.18) and (2.19) with respect to xy, vo. Thus, let

o’x o’x
——(,7,0) =0, ————(i,7,0)=0 ,7,0)=0, d(i,j,0)=0.
ax(g) 606 (1’17 ) ’ axB aU6 (l7J7 ) ’ C(l7.]ﬂ ) Y (17.]7 )
Then given quantities at time 7, quantities at time z,+; are computed by
. ’x Px (1—efy %
(1) m( ]a n+1) axs aUO (lvjatn) + ﬁ axf) 61)6 (l,],l,,)
At (1 —e)\OE . o’x
+ <?_T> a(x(la]7tn)7tn)m(l7]7tn)
At (1 —e )\ O°E ' ax\"
+ (?_(T> = — (i, j, 1), f)(a—x() (a—vo> (6575 tn), (2.24)
o*v o%v (1 —e#2) OF o%x
. .. _ aBA .o e .. ..
(11) ax(;) 61)6 (l7j7tﬂ+1) € axé 6U6 (lﬂj7tﬂ) + ﬂ ax (x(l7j7t”)7tﬂ) axf) aUS (l,j,l‘,,)
(1 —e /) 3°E ax\fax\" .
+ ﬁ a 2 ( (l .]7 )7tn) axo 6170 (l J’tn)7 (225)

rs=0,1,2, r+s5=2

and

. ov Ox .
clitn) =& (TP =Pt

Ox ov
d(i,j t, - 63[;[”“ —P,——P .7 .7 1y )
(i, )5 tus1) <6x0 2 o 1) (i ] tus1)

where
O [ox)’ o*x Ox\ [/ Ox % [ox )’
Pi=|—25(x" S Ox [Ox\fOx) Ox/dx)\" . .
: ax% <6U0) * aX() al)() (aUO) (axo) avé (ax()) (l7j7tn+1)7
Pofax\: . v [\ ox) o [fox)
Py= -5 |5 Hy Gv [Ox\fOx) Cu N\ .
’ 0x; <avo> * Oxg Ovg (61)0) <6x0) ov3 (6xo> (6], tas1)

The quantity £ i E( t,) is defined in Section 2.2.6.

2.2.6. The approximation of the charge density and electric field

An approximate trajectory x(i,j, ¢,), v(i,j, tn), t, € [0,T1],n =0, 1, 2, ..., N, can be considered the path of
an element of charge, g¢;;, in phase space. This element of charge can be defined as
9, = S (x(i,j ), v(i,j, ta), t.)A4;; where f is the approximate distribution function and A4, is a differential
area of phase space associated with the 7, trajectory at time ¢,. In terms of the differential of area in x,, u
space then
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exp(—ft,) AxoAu.

L~
ij ~

c

(1-u2)"?

Also on the time intervals [/T,(/+ 1)T,], /=0,1,... .M — 1
](x(ivj’ tﬂ)a U(iaj’ tn)vtn) = exp(ﬂt )gl[/n

Thus
In

c c&i,
— exp(—ft) AxgAhu = —=
(1 _ ujz)3/2 p( ﬁ ) 0 (1 _ uj)3/2

It is convenient to define a discrete charge density as

Zq”’é x —x(i,j,t,)) — h(x),

4ij = exp(f)gl] AxoAu. (2.26)

where d(x) is the Dirac delta function.
We approximate the solution to

2
L0 o 600 = b(L.n =0

by the particle-in-cell method. Let N, be a positive integer and € = L/Np. The interval [0,L] is then parti-
tioned as x; = ke, k =0, 1, ..., N, which gives a uniform grid of width €. Then let w(x) be a continuous func-
tion with compact support such that

/\ w(x)dx = 1, Zw(x— i) =1, z — integers
o0 i€z

and set w(x) = ¢ () The grid charge density pi(f,), k=0, ..., N, is then determined as follows: if
supp wx — xz) € [0,L] then

i) = [l = s = 3 a3 1) =)~ ).

Near the endpoints of the interval this formula is modified according to the periodicity of the solution. Gi-
ven the normalization of g,’;’ previously described it follows that €}, p,(¢,) = 0.
For the potential at the grid points we solve

T
62
d)() = 07 d)Np = 0
The electric field at the grid points, x;, for k=1, ..., N, — 1 is obtained as

Ek(tn) — ¢k+1 26 d)k 1

For the problems we study it can be determined analytically that E(0,7) = E(L,t) = 0. Therefore, for k=0
and k = N, we set Eq(t,) = Ey,(t,) = 0. We also compute

Epi(ty) — Exi(t) DE(t,) = E1(ta) = 2E4(t) + B (8)
2¢ ’ " e '

:pk(tﬂ)7 kilv"'aNpila

DEk (tn) =

The approximate field E(x,7,) and its derivatives are then defined as continuous functions of x
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E(x,t,) = ei:Ek(t,,)wf(x —Xi), (2.27)
=0

(x,t,) = eZDEk YW (x — xz), (2.28)

62 ZD Ei(t)we(x — xy). (2.29)

A particular function w(x) used in the present computation is

—~
[SS][%)

=
~—
[

|
(ST S )
D=

N IN
UdV/ANV/AN

|
=
|
o=

w(x) =

O PI= Blw NI—
Qe
I
=
SN—
o 8]
D=
N
=

=
QU oy

The function w(x) is of class
2.3. Regriding the solution

At times 7, =(/+ 1)Ty,/=0,1, ..., M — 1 the solution along particle trajectories is interpolated onto
the fixed grid given by (2.1). We set 7, = 0, and the particle method is restarted with the initial data being the
interpolated solution at time 7, ;. The regriding is carried out so as to preserve the total charge, momen-
tum, and kinetic energy of the solution. Our method for doing this is motivated by the procedure in [13]. At
time 1,4 =T, +ty, = ([ +1)T; the i'j trajectory has coordinates in phase space given by
(x(@,/,tn,)),v(@, ], tn,). These coordinates in phase space correspond to coordinates (x,,u,) in  where
x, =x(7', J', ty, ) and u, =v(l', j',tn,) [/ c* + v(i’,j’,tNg)z. The charge along the i,j trajectory is given by
(2.26) and is q, . Referring to the partition of Q given by (2.1) we assume indices i and j such that
Xo, <X, <X, and u; < u, < upy with (xo,,u;) a grid point given by (2.1). Corresponding to (xo,, #;), in
Q is the point (xo,,vo,) in Ay where vy, = cu;/(1/1 — u;). The charge qf,‘zj;“ is distributed between the eight
grid pomts with indices (i,j — 1), (i,)), (i,j+ 1), (G, j+2), (i+1,j—1), (i+1,)), (+1,;+1), (i+1,j+2).
Let % /(z .j) be the charge contributed to the i,j grid point in Q from the charge q,}:’, . We determine the
oc,,(z .J) as follows: let Py =(x, — x)/Axy, P, =1— Py, then ¢ —Pz(q, ,) qr —Pl(q, ). Thus qr is
charge distributed to the left of x, and gr is charge distributed to the rlght of x,. Let z;, = ¢1/2 and y;,
V2, ¥3 be the solution to

Yi+yaty; =2,
o, Y1 + Vo, ¥y + Vo, V3 = U(ilv]',» tNg)Zb (2.30)
(Uof,l)zyl + (UO,)2J’2 + (UO,+1)2)’3 = (U(l'/vjlleg))zzL

and z;, z,, z3 be the solutions to
Z1+ 2+ 23 = 21,
vo,21 + Vo, 22 + 0o,,,23 = (I, 7, ty, )7L (2.31)
(v0,)°21 + (v0,., )22 + (v0,,,) 'z = (0@, s tv,)) 20
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The charge distributed to points in Q with coordinates (xo,, ux), k=j—1,...,j+21is
% j-1 (ilvj/) =) al}/’(i/vjl) =Y, +z1, ai,j-%-l(i/’j/) = y3 + 22, O(lij+2(il7j/) = Z3. (2'32)
The charge distributed to points in Q with coordinates (xo,, ,ux), k=j—1,...,j+2 is obtained by
replacing z;, in Egs. (2.30) and (2.31) with zgr = ¢r/2 and computing the yy, y», y3, z1, 2z, z3 accordingly.
Then replacing ¢ with i + 1 in Eqgs. (2.32) we obtain o;41;_1(i,7), %1 00,j), Ois14+100.7)s 1,420 ,7).
Summing over all particle trajectories gives the total charge at the i,j grid point in Q, that is

+1,0 _ A
q;; = E o ()
l-/j/

Let da; = cAxoA, /(I — u?)*” then g1"" = ¢/*'"/da,. The grid function g/}’ is the initial data for (2.3) for
the time interval [(/+ 1)7,(/ + 2)T}].
One can verify that
110 CcAxoAu 1N, CcAxoAu
gliz gl L .3/
Z,J o (1 _ ujz-)3/2 Zl‘j J (1 _ uj2.)3/2

410 CAxoAu . 1N, cAxoAu
ZiijO/thj (1 . ujz)3/2 - Zivjv(lafa tNg)g[,j (1 — ujg)3/2 )

2 110 CAxoAu . 2 1N, CAxoAu
Zivj(voj) &ij “_—W_Zi,j(v(l’]’%)) &i; m (2.33)

That is the charge, momentum, and kinetic energy integrals are preserved by the regriding process.

The primary purpose of the regriding of the solution is to improve the long term stability and accuracy
of the numerical method. The coefficients a, .. ., d in (1.21) grow with time. For sufficiently large ¢ the coef-
ficients become large in magnitude, and this causes inaccuracies and instabilities to develop in the numerical
method. The solution to this problem is to limit the time interval on which the deterministic particle method
is applied. Thus the computed solution is periodically reconstructed on the fixed grid, and the particle meth-
od is then restarted with ¢, = 0.

2.4. The solution on the time interval [0,T]

The quantities used to represent the solution at times 7 € [0, 7] are the electrostatic energy defined as

ese(?) :% / CE D) dx, (2.34)

the kinetic energy

ke(?):% /0 : [ m W f(x, v, 7)dv dx (2.35)

and the free energy defined as
FE(7) = ese(?) + ke(?) — g/ fent(s), (2.36)

where ent(?) is the entropy of the system given by

ent(?) = 7/0 [mf(x, v, 1) In(f (x,v,7))dv dx.
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For 7 € [ITy, (I + I)T,] then according to (1.34) f(x,v,7) has a representation as f(x,v,7) = efg(x(x, v, 1),
u(vo(x,v,¢)),t) with ¢ € [0,T1]. In terms of the function g(x¢,u,f) and given (1.17) and (1.26) then

1ot 2 )
_5/0 [l(v(xO,vo(u),t)) g(xO,u,t)m du dx,

u

and

ent(? / / (xo0, u, 1) In(ePg(xo, u, ) ———— 0 )3/2 du dx.

For discretized versions of these quantities let #, =, +¢, where 7,=1[Ty, [=0,1,..., M, t,=nAt,
n=0,1,..., Ngand k = [N, + n. Then in terms of the discrete trajectories (2.18) and (2.19) and the approx-
imation to (1.21)

- 71 .. 2 In
ke(t) = 5 %:(U(lvjat ) & mmﬂxm (2.37)
ent lk Zgl ” ln ﬁtng” WAMA}CO (238)
—Uj
To compute the electrostatlc energy the particle trajectories given by (2.18) and (2.19) are ordered by
the x coordinates as 0 <x; < -+ < x;--- <xy<L, N=N,xN,. Each x; represents the position of a

particle, E(x;,t,) is the electric field at the particle position at time # = t; +1,, and Ax;=x;+| — X
Then

N-1 o 2
se(i) % T (E(x,v,tn) +2E(xi+17tn)) Ar. (2.39)
i=1

At times 7, = t; the solution along trajectories is reconstructed on the fixed grid. At these times the ese,
ke, and FE are computed based on the reconstructed solution. So, for example,

2 10
ZZUO g _u)3/2Aquo
J

According to (2.33) the reconstructed solution preserves kinetic energy. Thus the ke graph maintains con-
tinuity in time. However, the quantities ese and ent are not preserved under the regriding and so the ese and
FE graphs can exhibit discontinuities at the regriding points.

2.4.1. Summary of numerical method
Given the time interval [0,7] let 7 > 0 be such that 7/7T}; = M an integer. Then for positive integers N,,
Ny, Ng, Nplet Axg = LIN., Au=2/(N, + 1), At = T1/Ng, ¢ = LIN,,. Grid points (xo,, u;) and (xo,, vo,) are given

The time interval [0,77] is partitioned as 7, = nAt, n=0,1,2,..., N,.
The Poisson mesh is given as x; = ke, k=0,1,..., N,
For/=0,1,...,Mlet t,=IT; and for k = INg + nlet t; = 1, + ,.
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(1) at =0, n =0, that is, 7,=0, 7,=0:

&) = il o) = f | 30, —== . (Zk” Nmmmy<§)m0

—Llj k

and g/} = g,/ 7.
2)atl>0,n=0, that is, t;= [Ty, t, = 0:
x(i,7,0) = xo,, 0(i, /,0) = o,

Ox ov Ox ov
axo (lLJ? ) ) axo (l7j? ) ) avo (l7j7 ) b aU() (l j’ ) )
Ox Ox
gy o P
a(i, j,0) oo (4,7,0) =0, b(i,/,0) o (4,7,0) =1,
o o
" (i,/,0) =0, ———(i,j,0)=0, rs=0,1,2 rts=2,

Ox}, Ov}y Ox{, Ov},

c(i,j,0) =0, d(i,j,0)=0.
Values of g,’l0 are given from (1) if /=0 or from (4) if /> 0. The i,jth charge is

a5 =8y AxoAu.

(1 _ 1)3/2
(3) For a given time r,— IT,[=0,1,..., M—1:

For t,, n=0,1,2,...,N, —1 we assume values for g,j, x(i, j,t,), v(i,j,t,), 2 = X (i t,), 2 e L (§,j ),
Ox

s (i ) i (i 1), @i o ), DG o ) 558z (i ) 52 (055 ), €2 Jo 1), (i i 1), and 4. The solution
to the Poisson equation is approximated by the method’ of Section 2.2.6. The computatlons in the paper are

done with N, = N,. The electric field, E(x(i, j, #,),,), and derivatives & (x(i, j, ), ), az( x(i,/,t.),t,) are
computed at particle positions from (2.27)—(2.29). The solution Values of ese(#;), ke(#), and FE(¢;) are
computed as in Section 2.4 with k = IN, +n, t; = IT| + t,.

Then at time ¢, 4+

(i) g/ is computed from (2.3), 2 = (3, &/} 5=z AxoAu)/(€3°h(xr)), and gt =g/
(i1) x(z, Foln+1), v(z, ], n+1) are computed frorn (é 183 and (2.19).
(111) o (l7j, n+1)a axy (17]7 n+1)7 al’o (17]7 n+1)7 al’o (l7j, n+1) are ComPUted from (2.20)-(2.23),
. ox . . . ox ,. .
a(z,], tn+1) = exp(ﬁtnﬂ) 6—(laja tn+1)7 b(l,], tn+1) = exp(ﬁtnﬂ)— (l7J7 tn+1)'
) 0xo

. . 20 . s
(@iv) %(z,],tm), ﬁ(z,],tm), are computed from (2.24) and (2.25),

Do 61.70

. ov Ox .
C(la]7 tﬂ+1) = 63/””“ (a_Pl B _P2> (17]a tn+1)7

a
d(iaja tn+1) = 63/%“ <6—P2 - —P >(l7.]7 trl+1)7
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where
*x fOx\? ’x Ox '\ [/ Ox %x [ox)’
= [~ () L OX (NN _EX N ),
l 0xj <61)0> * Oxg Qv (av()) <6x0) v} <6x0> (is], tus1)
621] Ox 2 620 ox Ox aZU ox 2
Pr= |- 0( ) 1o G0 (NN TV G ).
2 ax% <6U0> + axo avo <avo> <6x0) al)(z) <ax0> (lajat +1)

(v) The charge at the i,jth trajectory is g o+l g,’j’“ e Aulxy.

(4) Forn=Ng, ty, =T:

For given /=0,1,...,M —1 then #, = [T, +ty, = (I + 1)T = 1,4, with k= (/+ 1)N,. The solution
along particle trajectories computed in (3) is reconstructed on the fixed grid on Q as described in Section
2.3. This gives the initial function g”rl ¥ for Eq. (2.3) at time 7, 4 ;. If / + 1 < M then the computation returns
to (2), and the cycle from (2) to (4) is repeated to compute the solution to (1.1) and (1.2) for
teel(l+1)T,(I1+2)T,].If I+ 1= Mthen k= MN, = N, and gl+1 0 = gu % provides the approximate solu-
tion to (1.1) and (1.2) at #y, = T. The ese, ke, and FE are computed at time T based on the function g/’ , ,
and the computational cycle is ended.

3. Computational examples
3.1. Steady state solution

For the time independent Vlasov-Poisson—Fokker—Planck system one can obtain an exact solution. This
solution can be used as an initial distribution function for the time dependent problem. The resulting com-
putation serves as a check on the accuracy of the numerical method.

We consider the set of equations

of of 62f

a—‘-E()aU apz+ﬁ (f) nggl, —OO<U<OO,
0

-2

and ¢(x) the solution to

62 00
oo = [ renode b,

$(0) = 9(1) = 0.

A solution is

f(x,v) =exp (cos(21tx) - '[;—Uq>, E(x) =

(3.1)
(21) cos(2mx) + \/%exp(cos(hx)).

(2m) sin(2mx),

mva

h(x) =

QIQ
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The solution to the time dependent problem (1.1) and (1.2) is therefore computed by the method of Sec-
tion 2 with initial function

folx,v) = exp (Cos(znx) _ l;_j)

and the background charge distribution /(x) given by (3.1).

Our goal is to estimate computationally the order of accuracy of the numerical method of Section 2. As a
representative quantity for the solution we graph the electrostatic energy as a function of time which is gi-
ven by expression (2.34). The discretized electrostatic energy, ese(# ), is computed according to (2.39). Fig. 1
gives the graph of ese(#) for 0<# <2. Here $=0.1, ¢=0.1, N, xN,=100x 100, Ar=0.0001 and
N, =4000. Eq. (1.21) is approximated using the SOR method iterated to a tolerance of 107" as mentioned
in Section 2.2.2. As expected for the steady state problem the graph is close to constant except, however, at
points of regriding where discontinuities are apparent. The parameter, ¢, of (2.2) determines the range of
discrete velocities used in the computation. This parameter can be adjusted to improve the quality of the
computed solution. In the present computation we let ¢ = 2. In subsequent computations this constant is
a given different value.

Our first step is to see what effect the time parameter, Az, has on the computation. Keeping the other
parameters the same as for Fig. 1 the parameter At is varied as Az =0.01, 0.001, 0.0001. Fig. 2 shows
the graph of ke for these values of Ar. It can be noted that the ke graphs computed from expression
(2.37) are continuous at the regriding points. The dotted line shows the “exact” value of ke which was ob-
tained by approximating the integral (2.35) using the function, f(x,v), of (3.1) and N.xXN,=
300 x 300 = 90,000 data points. We observe that the error in the computed solution for 7> 0 decreases

20 % % % % % % % % %
beta=0.1, g=0:1, 100x100, dt=0.0001, ¢=2, Ng=4000
CL O OOy SO ECRRTIIE STITONIE ERCIYISs MTSORNE O I AT
R EIAE SAEE TS SIS S NI NI A e
1.7 [T e T

R SRR R SE ST SO

w ° dashed line :exact ESE :
w 195 Do B T T S Do A T 7

& - solid line  ::computed ESE: _ : : :
() ETTESYSVSFRPEYIOYS RPSFFIISS ASFFRIVS TFPOVIS NFFPUION FFRIVN0E FFPOUNMIE SRIRRNS Soompeel
L RRRRCEIC ST EEFREANE NI CALLLCSS ST SR SO
TV RIS NSRS RN AT NI SRS M R
TS RIS TRIMIRE SRTNES SR DU SN I SR e

10 : : : : : : : : :
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time
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markedly with At and that the most accurate solution over the time interval [0,2] is with Az = 0.0001, i.e.,
At = O((Axo)? + (Au)?).

We make a further determination of the order of accuracy of the numerical method by computing the
error in the electric field. Let x;, k=1,...,N,—1 be the points on the Poisson mesh. Then

E(x;) =

Poisson mesh points at time z. Let

62(1) =

N,—1

2 (Elx) = Ei(0))’

i
N,—1

k; E(x:)

—%(2m) sin(2mx;) is the exact value of the electric field, and Ei() is the approximate field at the

the relative /, error in the electric field. Fig. 3 shows the graphs of e,(¢) for N, x N, x At = 50 x 50 x 0.0004,
70 x 70 x 0.0002, 100 x 100 x 0.0001. That is we use respectively 2500, 4900, 10,000 data points so that the
number of data points is approximately doubled from one computation to the next, and the time step is
halved. Also, Ar = O((Axo)* + (Au)®) for these computations. Values of e,(t) are given in Table 1 for
t=0, 0.3, 1. We see that increasing the number of data points by a factor of two and reducing the time
step by 1/2 approximately reduces the error by 1/2. This suggests that the error is O(1/N + Ar) where N
is the number of data points. But (Ax,)* + (Au)> = C/N, C a constant. Thus the computations indicate that
the method has accuracy that is O((Axo)* + (Au)> + Ar). It can be noted that it is shown computationally in
[18] that the particle-in-cell method for the Vlasov—Poisson system using a finite difference method to solve
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the Poisson equation is second order accurate in the spatial parameters assuming N, = N,. The method in
[18] can only be O(A#) in the time parameter. Thus the order of accuracy presently obtained for nonzero ¢, f8
is consistent with this previous result for ¢ = = 0.

3.2. Time dependent solution, approach to steady state

It is known that the solution to the Vlasov-Poisson—-Fokker—Planck system converges to a time inde-
pendent steady state solution as ¢t — oo [3]. We demonstrate this property computationally by considering
an initial distribution function of the form

K 2mx —?
14+2cos|(— ) |Jexp (=], 0<x<L, 32
o (e () o () -

Uth, €, L, K — constants and /(x) = K in (1.3). If § = ¢ = 0 then (1.1) and (1.2) becomes the Vlasov—Poisson
system, and the solution with initial function (3.2) and A(x) = K represents classical Landau damping. The
Landau damping phenomenon is a characteristic of collisionless plasma that results in a damping of the
plasma wave without energy dissipation through collisions with the surrounding medium. The physical
mechanism that causes this is a transfer of energy from the wave to plasma particles that are moving with
a velocity close to the phase velocity of the wave. However, if f8, ¢ # 0 then as time increases the dominant
process becomes a dissipation of field energy as a result of the diffusion in velocity space. The solution,

fO(x7 U) =
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Table 1

Relative /, error in the electric field

N, X N, x At e)t),t=0 ex(1), t=0.3 e)t), t=1
50 % 50 x 0.0004 11.32 D4 9.683 D-4 9.907 D-4
70 x 70 x 0.0002 5.772 D-4 4.945 D-4 5.289 D-4
100 x 100 x 0.0001 2.828 D-4 2.429 D-4 2.389 D-4

fix,v,1), of (1.1) and (1.2) approaches a steady state as t — oo. It can be determined that the steady state

solution is
K —?
f(x, U) = m €Xp (W) (33)

When ¢, f # 0 the approach to steady state can be observed several ways. First, we can consider the
electrostatic energy given by (2.34). At the steady state with f{x,v,¢) replaced by the function (3.3) and
h(x) = K in (1.3) it follows that p(x) =0, ¢(x) =0, and E(x) = 0. Thus for the solution to (1.1) and (1.2)
with initial function (3.2) as ¢ — oo then ese — 0. Secondly, the kinetic energy is given by (2.35).
Replacing f(x,v,¢t) in (2.35) by the function (3.3) and evaluating the integral it follows that as
t — oo, 2ke — KLgq/f. Finally, a useful quantity for describing the convergence to steady state is the
free energy defined by (2.36). It is shown in [3] that the free energy is a monotonically decreasing func-
tion of time that is bounded from below. Hence FE approaches a limit as ¢ — oco. The proof in [3] is
for an initial value problem in three dimensions. However, we can show computationally the applica-

x10°
25 % % % % % % % % %
eps—01 L=4, K 14 -
thin I|ne beta 0, q_O 10, 000 partlctes dt—0 01
2f S K (KRR RRRRRE TR RRREE -
solid Ilne beta_O 001 q_0 05*beta 150x150 c 0.5, Ng_800
[ EORIT RIS SR SIS OIS INIOIE SRR S SN SN
w : : : : : : : : :
(7)) N N N N N N N N
w N N N N N N N N N
N R S A
1q \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ST AT ST T
il “““ """"""""""""" E IIIIIII """" """ |
. N ivnY ““ :
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time

Fig. 4.
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bility of this result to the present 1-D periodic problem. For the function (3.3) the entropy integral in
(2.36) can be evaluated exactly. Along with the steady state values for ‘ese’ and ‘ke’ it can be deter-
mined that FE — % In(K/\/2ng/B) as 1 — oo.

To demonstrate the time asymptotic behavior we compute the solution to (1.1) and (1.2) with initial
function (3.2) for varying g and . In (3.2) let e = 0.1, L = 4, vy, = 0.3/n, K = 1/4. The thin line in Fig. 4 gives
the graph of electrostatic energy for the case ¢ = f# = 0. That is this is the solution to the Vlasov—Poisson
system with no Fokker—Planck diffusion. This computation was done with a particle-in-cell method similar
to that in [18] using 10,000 initial data points. The slow non-monotonic decrease in the amplitude of oscil-
lations in the graph of ese is indicative of a mild Landau damping.

To observe the convergence to steady state for ¢, f # 0 we now let § take on the values f = 0.01, 0.0025,
0.001, ¢ =0.058 and compute the solution using the method of Section 2. For these computations
N, x N, =150x 150 = 22,500 particles, Az = 0.01. For = 0.001 then N, = 800. That is regriding is at time
intervals At = 8. For  =0.0025, 0.01, N, = 400. Regriding is at intervals At = 4. The parameter, c, of (2.2)
has the value ¢ = 0.5. The iterative procedure (SOR) is used throughout to approximate (1.21). Since ¢/
B =0.05 in each case the solutions to (1.1) and (1.2) all converge to the same steady state solution as
t — oco. The difference is in how fast the solutions converge to the limit. The solid line in Fig. 4 shows
the graph of ese for § = 0.001, ¢ = 0.05f in comparison to the graph for ¢, § = 0. Fig. 5 gives the ese graphs
for =0.0025, 0.01. As expected ese — 0 as ¢ gets large with the limit approached more rapidly for the lar-
ger ¢, 5. For g/ = 0.05 the limiting value of ke for the given parameters is 2ke — KLg/ff = 0.05. Fig. 6
shows the graphs of kinetic energy for the three cases considered. The approach to the steady state value

x10°
25 ? ? % % % % % % ?
. L=4, K=1/4, 150x150, ¢=0.5, dt=0.01, Ng=400 -
. thin line : beta=0.0025, q=0.05*beta :
2 [EEREETE EEEEEEE KRR KRR REEEE R R TR
solid line : beta=0.01, q=0.05*beta
s s N S e SRt S e S
(2]
w
&
1, ................................................................................................
o [l
0 g i i i i i i
0 60 80 100 120 140 160 180 200

time

Fig. 5.
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is reasonably clear. Fig. 7 shows the graphs of FE as a function of time for the three cases. The graphs are
monotonically decreasing as expected based on the theory in [3] and approach a limiting greatest lower
bound. For K=1/4, L =4, ¢/ =0.05 then lim,_, . FE = % In(K/+/2nq/p) ~ —0.04036834. The graphs
of FE in Fig. 7 show a good agreement with this theoretically determined limit. For a more quantitative
measure we refer to Table 2. Here the computed FE is given at the end of the respective time intervals
for = 0.001, 0.0025, 0.01 and g = 0.05p.

As another example the solution to (1.1) and (1.2) is computed with some different constants in (3.2). We
now let ¢ =0.01, L =1, vy, = 0.3/m, K= 3.5. The thin line in Fig. § gives the ese graph for the Vlasov—Pois-
son solution, i.e., f = ¢ = 0. For this computation we use a particle-in-cell method. For the present set of
parameters the graph of ese has a higher frequency of oscillation than the previous example and is some-
what more difficult to resolve computationally with the particle-in-cell method. Thus for the ¢, f = 0 case we
use 40,000 data points. To observe the approach to steady state for ff,g # 0 we let f = 0.01 and vary g as
g = 0.0001, 0.00015, 0.0002. Now the ratio ¢/f varies, and the time dependent solutions approach different
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0.035(
w :
X 0.03f
N : :
T - C s . _ : _ - N
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0015/ vvvviii e ERRRR PP RRRRRRRRRE S SERRRPRRRRRRRRRRRYS
73] SER R TN SR ]
0.005 i i i i
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time
Fig. 6.
Table 2
Computed FE at time 7, ¢ = 0.05f
B T FE
0.001 2400 —0.04036779
0.0025 1200 —0.04036822
0.01 400 —0.04036827

Exact steady state FE ~ —0.04036834.
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steady state solutions. The computations are done by the method of Section 2 with N, x N, =100 x
100 = 10,000 particles, Az =0.01, N,=400. Thus regriding is at intervals At =4. For the constant in
(2.2) ¢ = 0.5. It can be noted that the method of Section 2 which includes the regriding requires fewer initial
data points for a stable computation than the particle-in-cell method which does not include regriding used
for 3, ¢ = 0. In all cases the graphs of ese approach zero; however, the convergence to the limit is more rapid
for the larger value of ¢. The graph of ese for f = 0.01, ¢ = 0.0001 is in Fig. 8 in comparison to the graph for
B =¢q =0. The ese graphs for §=0.01, ¢ = 0.00015 and = 0.01, ¢ = 0.0002 are in Fig. 9. The difference in
the steady state solutions is seen clearly in the graphs of the kinetic energy. For ¢ = 0.0001, 2ke — KLg/
p =0.035, for ¢ = 0.00015, 2ke — 0.0525, and for ¢ = 0.0002, 2ke — 0.07. This is demonstrated clearly in
Fig. 10. The free energy graphs decrease monotonically, but in this case approach different limits. The
FE graph for f=0.01, ¢=0.0002 is shown in Fig. 1l1. For K=3.5, L=1, ¢/f=0.02 then
lim, ,  FE = % In(K/+/2ng/p) ~ 0.16028852. The graph of Fig. 11 is in agreement with this limiting value
of FE. By comparison to the exact steady state value of FE the computed value in Fig. 11 at 7' =400 is
FE = 0.16028863.

We comment briefly on the choice of the regrid parameters, T, N,, where T} = N,At = At, the re-
grid interval. As ¢, increases on the interval [0,7}], ¢,=nAt, n=0, ..., N,, the coefficients a(i,j,t,),
b(i,j,t,) in (2.3) increase, and the quantity ©(z,), defined in Section 2.2.2, also increases. The closer
O(t,) gets to one the more iterations are required for convergence of the SOR method. Thus N,
and T are chosen sufficiently small so as to limit the number of iterations required for the SOR algo-
rithm. Reducing 7 can also improve the long term stability and accuracy of the method and keep
discontinuities at the regriding step from becoming too pronounced. However, N, and T are chosen
sufficiently large so that most of the computation goes into the particle cycle of Section 2.2 and not
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into the regriding step of Section 2.3. Also, the smaller ¢, the faster the convergence of the SOR meth-
od, and the larger one may be able to take N, and 7. So, for example, in the computation given by
the solid line in Figs. 9 and 10, ¢ = 0.0002, At =0.01, N, =400, T) =4, at the beginning of a particle
cycle the SOR method converges to a tolerance of 10~ ! w1th about 7 iterations and at the end of the
particle cycle the convergence requires about 14 iterations. For this example there is very little change
in the computed solution if instead of using N, =400, 7, =4 we let N, =200, 7} =2. Thus, within
limits the regrid parameters need not be spe01ﬁed very precisely. For the computation given by the
solid line in Figs. 4 and 6, ¢ =0.00005, At=10.01, N, =800, 77 =8, the SOR method converges to
a tolerance of 10~ with 4-5 iterations on the entire partlcle cycle. We note that the tolerance for
the SOR method is 10~® for the computations of Figs. 4-7. For all other computations it is 107!
We do not have a specific formula for setting the regrid parameters. For a given initial data and
parameters, ¢, 5, some experimentation over a few computational cycles was required to determine
suitable values for Ty, N,.

4. Some other numerical methods

In this section we consider some other ways of approximating the solution to (1.1) and (1.2). This allows
us both to determine with more certainty the validity of our computations and also to point to possible
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advantages the present numerical method may have over other methods. Two methods considered are the
random particle method described in [1,9] and the finite difference method of [14].

We start with the random particle method. The method derives from the stochastic interpretation of the
convection—diffusion process which is given in terms of the Langevin equation

dr = v dr, (4.1)

dv = (E(x, 1) — pv)dt 4+ \/2q dB(z). (4.2)

Here B(¢) represents Brownian motion. With some suitable assumptions the PDE (1.1) can be derived on
the basis of Egs. (4.1) and (4.2) as is done in [5]. The random particle method as applied to the Vlasov—Pois-
son—Fokker-Planck system numerically approximates the solutions to (4.1) and (4.2). Our application of
this method to approximate the solution to (1.1) and (1.2) proceeds as follows: phase space is partitioned
as in Section 2.1. That is,

1
xo/.:(i——>Ax0, 1.217...,]\]){7
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This distribution of initial data points (xo,, vy, ) is referred to as uniform (in x,%) in contrast to an asymptotic
initial distribution to be considered subsequently. The partition in the time variable is ¢, = nAt,
n=0,1,...,N, T=NAt and t,+,, = t, + At/2. approximate trajectories are defined as x(i,j,t,), v(i,j,t,)
such that x(i, ,0) = xo,, v(i,,0) = vo,. These trajectories satisfy a numerical approximation to the stochastic
differential equations (4.1) and (4.2). The method we use is due to Chang [6], and which is also described in
[1]. Following the description in [1]if x(i,},2,,), v(i,j,t,) are given then the values at time ¢, + ; are computed as

" At
(1) ¥ =x(i, )t n) + 50l ta),

. (4.4)
o = 000, 1) + 5 (Bl ta). 1) = ol 1)),
.. .. n+l 3 1 \/§
(2> X(l,_], ZLnJrl) = x(l7.]7 tn) + Atvijz + (At)z V 2q (E d)n,l + ?(b;z}z) )
.o _ .. At F n+2 n+2 (4 5)
U(lvj>tn+1) - U(la]7tn) +7( ( z/ >tn+2) ﬁl) ) .

ﬁ(Af);f< P +\/— n2> + VAH(29), ;-

Here ¢,,.1 and ¢, > are independent normally-distributed random numbers with zero mean and unit variance
and E(x(i,/,t,),t,) is the approximate electric field.

To derive the self consistent field for the solution of (1.1) and (1.2) one associates with each trajectory a
charge

_ QfO(XOiv UOi)Aquo

¢ = :
o ;\4(1 _MIZ-)S/Z

(4.6)

where

A_(Zfoxo,o A=y ™ )/(Zm)

The constant 4 is computed in Section 2.2.1 and is needed to insure total charge neutrality. At time ¢, the
solution to (1.1) has an approximation of the form

x U, tn Zq” l J? ))5(U_U(iajatn))
and the discrete charge density is given as

Zq,, x(i, j,ta)) — h(x).

From the function p(x,t,) one computes the approximate field E(x,,) exactly as in Section 2.2.6. At the
half step, time 7, + 15, the field E is computed on the basis of a p(x, ¢) in which x(i,,z,) is replaced with x"H/ 2

The random particle method is used to compute the solution to (1.1) and (1.2) for which the initial data,
fo(x,v), is given by (3.2). The background charge in (1.3) is given by /(x) = K as in Section 3.2. In (3.2) the
various parameters are € =0.1, L=4, vy, =0.3/nr, K=1/4. In (1.1), (4.4) and (4.5) we let f=0.001,
¢ = 0.058. The constant in (4.3) is ¢ = 0.5. We have previously computed the solution to (1.1) and (1.2) with
this initial data and parameters ¢, § by the method of Section 2. We will refer to the method of Section 2 as
the deterministic particle (DP) method. The ese graph computed by the deterministic particle method is gi-
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ven by the solid line in Fig. 4 and the ke graph is shown by the solid line in Fig. 6. We compute these same
quantities using the random particle method. The ese is computed from the approximate field, E, at the
particle positions the same way as in Section 2.4. The ke is computed from the approximate trajectories
given by (4.4) and (4.5) and the charge, ¢;;, (4.6), as

1 N
ke = 5 ;(U(l’ﬁtﬂ)) 9,

Fig. 12 gives the graph of ke and Fig. 13 the graph of ese for the random particle method in which particle
trajectories are computed by (4.4) and (4.5). Here N, x N, = 200 x 400 = 80,000 particles and Az = 0.01. For
the Poisson mesh the parameter is N, = 200. Increasing the number of discrete velocities improves the qual-
ity of the computed solution which is the reason for using more points in velocity space than in position
space. The dotted line in Fig. 12 and the thin line in Fig. 13 represent the solution computed by the method
of Section 2 (the DP method), that is the dotted line in Fig. 12 is the same graph as the solid line in Fig. 6
and the thin line in Fig. 13 is the same graph as the solid line in Fig. 4. These graphs demonstrate a very
good agreement between the random particle method based on (4.3)—(4.5) and the method of Section 2.
A second example is now considered with a different set of parameters for fo(x,v) given by (3.2). We let
€=0.01, L=1, vy, =0.3/n, K= 3.5. The parameters f3, g are = 0.01, ¢ = 0.0002. This example was previ-
ously computed by the deterministic particle method. The ese graph is the solid line in Fig. 9 and the ke
graph is the solid line in Fig. 10. The random particle method based on (4.3)-(4.5) is therefore applied
to compute the solution to (1.1) and (1.2) for this second set of parameters. As in the previous example
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N, x N, =200 x 400 = 80,000 particles, At = 0.01, N, = 200. The solid line in Fig. 14 shows the graph of ke
and the dashed line in Fig. 15 the graph of ese in comparison to the quantities previously computed by the
deterministic particle method (the dotted line in Fig. 14 and the solid line in Fig. 15.) The ke graphs dem-
onstrate a reasonably good correspondence between the two methods; however, from Fig. 15 it is seen that
the ese graph is not well resolved by the random particle method. It can be noted that the electrostatic en-
ergy is a smaller quantity and has a more rapid oscillation for the present example than for the previous
example. This may account for the increased difficulty in computing it accurately.

A question one might ask is whether the results obtained with the random particle method, in particular
the ese graph in Fig. 15, can be improved with a different way of distributing the initial data points. To
address this question we compute the solution to (1.1) and (1.2) using the random particle method with ini-
tial data asymptotically distributed according to a low discrepancy sequence of points. Initial distributions
of this type have been used in applying particle methods to solve the Vlasov—Poisson system and are known
to have good accuracy and stability properties. We use the low discrepancy sequence based on Fibonacci
numbers applied by Neunzert and Wick in [12].

To compute with asymptotically distributed points we follow the procedure described in [19] where some
similar computations are done for the Vlasov—Poisson system. For the initial distribution function for (1.1)
and (1.2) let fo(x,v) = h(v)g(x) where

2
g(x) =14 2ecos (%), 0<x<L (4.7
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Here

2

1 Umax _ l'z
C=—— / e “n dv.
V210 S o
Thus

/01 /z:fo(x, v)dv dx = KL.

2500

(4.8)

To obtain the initial particle distribution in phase space we start with a sequence of points in the unit
square as follows: let o, be the ky, Fibonacci number, i.e., ag=0o; =1 and ox4; = op + oy _q, and let

N = oy. Then let
21

€1 =

Zak
20i— Doy + 1
e;,—:{w} i=1,....N,

20(k

(4.9)
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where {x} refers to the fractional part of x. The points (e; ;> ;) comprise a low discrepancy sequence of N
points in the unit square. The coordinates of the initial data points in phase space are (xo,, vg,), i =1,...,N
which are obtained as solutions to the equations

1 xoi 1 1)0‘,
el‘i:Z/O g(x)dx, ez’izl?‘[, h(v)dv.

'min

Applying now the Chang method to approximate the stochastic differential equations (4.1) and (4.2) we
let x(i,0) = x,, v(i,0) = vy, i=1,...,N. Then for n=0,1,..., N, given (x(it,),v(i,t,)) the quantities
(x(i,t,,+1),v(i,t,+1)) are computed by expressions (4.4) and (4.5) in which the indices (i,j), i=1,..., Ny,
j=1,..., N, are replaced by the single index i =1, ..., N. Along each trajectory the charge ¢;; given by
(4.6) is replaced by ¢; = KL/N. Thus the charge along each trajectory is a constant, and the total charge
is Y0 ¢, = KL.

To compute the approximate electric field in (4.4) and (4.5) a discrete charge density is now defined as

N N KL
Pl 1n) =Y q:0(x —x(i,1,)) — h(x) =) 00 =x(i, 1)) = h(x).
i=1 i=1
With p(x,,) so defined, and similarly at time 7, + 12, the approximate field E(x, ,), E(x,#,1/2) is computed
as in Section 2.2.6.

The random particle method with initial points asymptotically distributed is applied to compute the

solution to (1.1) and (1.2) of Figs. 14 and 15. Thus in (4.7) and (4.8) the parameters ¢, L, K, vy, are as pre-
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viously given for the solution with uniformly distributed initial points. In (4.8) we let vy = 100y,
Umin = —10vy,. The Fibonacci number o is taken as o4 = 75025. Thus N = 75025 initial data points are used
in the computation, At = 0.01, N, = 200. The thin line in Fig. 14 is the ke graph and the thin line in Fig. 15
is the ese graph computed according to the random particle method with asymptotically distributed initial
data. The quality of the solution computed with asymptotically distributed initial points is somewhat better
than the solution based on initial points uniformly distributed in the xg,u variables (shown by the solid line
in Fig. 14 and the dashed line in Fig. 15). However, the problem of resolving accurately the graph of elec-
trostatic energy still remains. We note that the random particle method with asymptotically distributed ini-
tial data was also applied to the problem of Figs. 12 and 13. A good agreement was obtained for this
example between the asymptotic method and the other methods of approximation.

We also approximated Eqs. (4.1) and (4.2) using the 1.5 strong scheme referenced in [11, p. 383] and
which is used for the numerical experiments in [15]. The random particle method with this different method
for approximating the stochastic differential equations was applied to the two examples of Figs. 12-15.
Here the initial data was given the uniform distribution in the xq,u variables. The results were very similar
to those we get with the Chang method. Thus we did not get an accurate representation for the ese graph of
Fig. 15 using the random particle method. The graphs in Figs. 13 and 15 make it appear that the random
particle method approximates the solution to (1.1) and (1.2) of Fig. 13 more accurately than the solution of
Fig. 15. However, this is not necessarily the case. If one graphs the ese curve of Fig. 13 for small values on a
fine scale what is observed is that the random particle method does not resolve accurately the electrostatic
energy for values smaller than approximately 107>, and this is similarly the case for the graph of
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electrostatic energy of Fig. 15. What is also observed is that the deterministic particle method obtains a
good resolution of the ese graph with well defined oscillations to very much smaller values than are resolved
by the random particle method.
We now consider the finite difference method of [14]. Let Eq. (1.1) be written as
of  of of 0 X

o Y 6_+E( )— ﬂ (f) 932

The left side of (4.10) is the Vlasov—Poisson part and the right side is the Fokker—Planck part of the equa-
tion. In [14] the approximation to the solution to (1.1) is maintained on a fixed rectangular grid in phase
space. The Fokker—Planck part of the equation is approximated by a finite difference method on the fixed
grid. The differencing in time is done along characteristic directions associated with the Vlasov—Poisson
part of the equation. This requires that function values be interpolated from points on the grid to points
off the grid at each step of the computation. The techniques used for the differencing in time are similar
to those of Cheng and Knorr in [7]. For the detailed description of the numerical method we refer to [14].

The finite difference method is applied on a region of phase space o/ = {(x,v)/0<x<1,—-W <o W}
for a positive number W. Let M., M,, M, be positive integers, Ax = 1/M,, Av = W/M,. Then the region
o/ is partitioned as x; = iAx, i=0,1, ..., M, and v; = jAv, j= —M,, ..., M,. The time interval [0,7] is par-
titioned as ¢, = nAt,n=0,1, ..., M,, T = M,At. If f{x,v,t) is the solution to (1.1) and (1.2) then the approx-
imation to f{x;,v;,7,) is denoted /1 The electric field is computed at a half step in time, 7,4 » =, + At/2, at

(4.10)
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grid points x;, i =0, 1, ..., M, and is denoted E;’H/ 2 Given the initial function to ( 1.1), fo(x,v), at time ¢, = 0
then fj = folxi,vy), i=0,1,.... My, j=—M,,...,M,. The subsequent values /7, E;’“/Z7 n > 0 are com-
puted by the method of [14]. To compare the method Wlth that of Section 2 we compute the ese, ke, and FE.

The ese is computed as

1 M,—1 n+l/2 +E’n+l/2
CSC(ln) = E ZO (fﬂ Ax.

There is a small discrepancy here in that our value for ese at time ¢, is based on field values computed at the
half step. However, we determine that this discrepancy has a negligible effect. The ke and entropy, ent, are
computed as

1 M,\‘*l My 5
ke(t,) =5 S () fAxA,
=0 j=—M,
M—1 M,
ent(t,) Z Z f,”j In(f}",) AxAv.
i=0 j=—M

and FE = ese(z,) + ke(z,) — ¢/p ent(z,,).
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The finite difference method of [14] is applied to the example that was computed by the random particle
method for Figs. 14 and 15. ' That is, the initial data, fo(x,v), is given by (3.2) with parameters € = 0.01,
L=1, v, =0.3/n, K=3.5, the background charge is /i(x) = K, the parameters f, ¢ are f=0.01,
¢ =0.0002. Figs. 16-18 show the graphs of ese, ke, and FE computed by the finite difference method.
The grid parameters for these computations are W =4, MM, = 150,150, At = 0.04. The total number
of data points on the grid is M, X (2M, + 1) =45,150. The other graphs in Figs. 16-18 are computed by
the deterministic particle method. These graphs were previously shown in Figs. 9 and 10 for which the grid
parameters are N, x N, = 100 x 100 = 10,000 particles, Az =0.01. The correspondence between the two
methods seems quite good particularly in the graphs of ke and FE. As the steady state value of the kinetic
energy is 2ke = 0.07 then as seen in Fig. 17 this limit is being approached somewhat more precisely by the
deterministic particle computation. There is some discrepancy between the two methods in the graph of ese.
The electrostatic energy is a relatively small quantity and is the most sensitive to changes in the computa-
tional method. The different ways of distributing the initial data points may account for the difference in the
two ese graphs.

In drawing some comparison between the finite difference method and that of Section 2 it appears that
the method of Section 2 has a higher order of accuracy. This can primarily be due to the fact that with the
method of Section 2 the parameter At can be refined independently of Axy and Au to reduce the error. We
conjecture based on the computations of Section 3.1 that the error for the method is of the form
O((Axo)* + (Au)* + At). For the finite difference method the parameter Az cannot be taken independently
of Ax and Av. A bound on the error for the time interval [0,7] given in [14] is of the form

! The computer program for doing these calculations was provided to us by the author of [14].
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(Ax)* + (Av)* e " At
KW)|At+ A7 + A 1+Au :

(4.11)

Here W is the upper bound on velocity in region .7, K(W), a certain function of W, and C a constant.
According to this estimate for a given Ax, Av, and W there is an optimal At that gives the minimal error.
No claim is made in [14] that the bound (4.11) is optimal, and we do not attempt to verify the estimate
computationally. However, our computations do indicate that an expression of the type (4.11) can be rep-
resentative of the error for the finite difference method. For Ax, Av, and W fixed as At is decreased the error
will initially decrease to a certain point and then as Az is further decreased the error of the method increases.
It therefore becomes necessary to choose A¢ close to the optimal value to minimize the error. Based on the
estimate (4.11) and some experimentation we expect that At should be chosen such that

At = K\/(Ax)* + (Av)’, K a constant. However, there is uncertainty as to how to choose K, and changes
in this parameter can have a notable effect on the computed solution.

To demonstrate the effect that varying Az can have on the finite difference method we consider the free
energy graphs of Fig. 18 and observe the approach to steady state on a fine scale. Fig. 19 gives the free
energy graphs for the finite difference method with W =4, M, .M, = 150,150 (45,150 data points) and
At =0.05, 0.04, 0.03, 0.02. As the steady state free energy is a lower bound for the free energy it is apparent
that there is a loss of accuracy in the graphs for Az = 0.03, 0.02. Here the graphs go below the steady state
value with the loss of accuracy more pronounced in the graph for Az =0.02. The optimal Ar for this
computation seems to be around Az = 0.04, 0.05, and the graphs for these Atz values give a more accurate
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representation for the approach to the limit. Fig. 20 shows the approach to steady state given in Fig. 19 for
which the scale is further refined. Included in Fig. 20 is the FE graph computed by the deterministic particle
method for which N, x N, = 100 x 100, Atz = 0.01 (shown in Fig. 18). Also included for a point of reference
is the FE graph computed with the deterministic particle (DP) method with N, x N, = 50 x 50, At = 0.04,
N, =100. The jump discontinuities apparent in the DP graphs on this scale are due to the regriding.
The regriding preserves kinetic energy but not entropy, so the ke graph is smooth but the entropy has dis-
continuities at the regriding points. For the solution computed by the DP method and N, x N, = 100 x 100
the convergence in the time parameter is largely complete with Az = 0.01 and further reducing A makes an
insignificant change in the solution. The exact steady state value of the free energy is FE = 0.16028852, and
the solution computed with the deterministic particle method, N, x N, = 100 x 100, Az = 0.01, is converging
at 7= 400 to the value FE = 0.16028863 (taken at the end of the particle cycle before regriding). This com-
putation based on the deterministic particle method is giving a somewhat more precise answer for the lim-
iting value of FE than is being obtained by the finite difference method.

To further study the convergence of the finite difference method we consider the solution obtained with
M, x(2M,+ 1) =150 x 301 data points, W =4, At =0.04, refine the grid, and observe the effect on the
graph of kinetic energy. Fig. 21 shows the approach to steady state in the graph of kinetic energy on a fine
scale. The three graphs for the finite difference method are for grid parameters W =4,
M, x(2M,+ 1) =150 x 301, 200 x 401, 300 x 601, with At = 0.04, 0.03, 0.02, respectively. Thus in reducing
Ax, Av, and At the ratios Ax/Av and Ax/At are constant. Also included in Fig. 21 are the KE graphs for the
deterministic particle method with ¢ =0.5, N, x N, =100 x 100, Az = 0.01 and ¢= 0.5, N, x N, = 50 x 50,
At = 0.04. It is evident that the computed solutions with the finite difference method approach more pre-
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cisely the steady state value for the kinetic energy as the grid is refined. However, the approach to the steady
state KE computed with the deterministic particle method is still more accurate and is obtained with sig-
nificantly fewer data points.

Based on the present computations as well as others we have done we conclude that one can obtain good
results with the finite difference method. It is, however, necessary to make a correct choice of At in order to
get the best accuracy, and there is some uncertainty as to how to choose an optimal Az. With the method of
Section 2 there can be less uncertainty as to how to choose the parameters. For a given Ax, and Au we de-
crease Ar until there is negligible change in the computed solution. Usually the regrid parameter, NV,, is set
so that regriding is done at the same points in time for the different Az. Refining Ar then gives the most
accurate solution for a given Axy and Au. In addition, the computations indicate that the method of Section
2 has a higher order of accuracy than the finite difference method. The finite difference method is a simpler
numerical procedure and for a given number of data points computationally significantly faster. However,
as the method demonstrates lower accuracy one may obtain a comparably accurate solution with less com-
puting resources using the method of Section 2. For example, we consider the solution to (1.1) and (1.2) of
Figs. 16-18. The computation with the finite difference method uses 150 x 301=45,150 data points and
At = 0.04. With the deterministic particle method a solution to this problem of comparable accuracy is
computed with 50 x 50=2500 data points and At = 0.04, N, = 100. The FE and ke graphs for this compu-
tation are shown on a fine scale in Figs. 20 and 21. With these parameters computed to 7°= 500 the DP
method required about 0.54 times the computer memory and about 0.46 times the running time as the com-
putation with the finite difference method. The computations were done on a Pentium based Linux
workstation.
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5. Conclusion

The numerical method presented is a deterministic type of particle method combined with a process for
periodically reconstructing the distribution function on a fixed grid. The computations indicate that the
numerical procedure is convergent and accurate over an extended time interval. By a transformation of var-
iables based on characteristic equations associated with the transport part of (1.1), Eq. (1.1) is put into a
form so that numerical methods for parabolic type partial differential equations can be applied. A direct
method, Douglas—Rachford, and an iterative procedure, SOR, are outlined for solving the transformed
Eq. (1.21) as a part of the particle method cycle of the computation. For small values of the diffusion
parameter SOR is the more efficient method of approximation. This is because with small ¢ in (1.1) the iter-
ative procedure is rapidly convergent requiring relatively few iterations. Thus the PDE (1.21) is solved
rather quickly at each step of the particle computation. The regriding of the approximate distribution func-
tion is introduced so as to limit the time interval on which the particle method is applied. This greatly en-
hances the long term stability of the numerical method. In comparison with some other methods of
approximating (1.1) and (1.2) we find that the present method gives a higher degree of accuracy in the com-
puted solution and with relatively fewer data points for the initial distribution function.
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